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Abstract 
A key requirement on color printers is maintaining 

accurate color reproduction in output images. Reproducing the 
same colors more precisely on the same printer or between 
different printers requires a color calibration process involving 
precise measurement of the output sheet’s chromaticity and 
subsequent chromaticity adjustments. This sort of color 
calibration has conventionally been a complicated offline 
process, involving placing and measuring the output sheet in a 
standalone colorimeter and then editing and adjusting print data 
based on the colorimetric data. Usability improvement and 
space saving in this process have been needed. And with the 
growth seen in the digital color press market in recent years, 
expectation for the inclusion of more accurate colorimetric 
sensors and more sophisticated automatic color matching are 
increasing. In response, we developed a spectrophotometric 
sensor with excellent colorimetric precision that is small enough 
to fit inside a color printer. In this paper, we report on the 
optical technology that was a key to reducing the size of 
spectrophotometric sensor and examples of applications using 
the digital press device, imagePRESS C10000VP, which makes 
use of the developed sensor. 

Introduction  
Along with maturity of the POD market in recent years, the 

demands for more accurate and stable color reproduction in 
image output from digital press devices have been increasing. 
Various manufacturers are trying to meet the demands by rolling 
out models with optical-density sensors placed after the fixing 
process for auto gradation adjustment. Such functionality has 
allowed manufacturers to provide satisfactory operating 
conditions that alleviate users from traditional labor intensive 
work of printing test patterns and measuring their colors offline. 

Given such circumstances, we have been working to 
develop a small spectrophotometric sensor capable of surpassing 
single-color gradation adjustment and providing color tone 
correction, with the objective of achieving more advanced color 
matching from the viewpoint of color reproduction. 

The small spectrophotometric sensor discussed in this paper 
was developed on the assumption that it would be located along 
the paper path of an electrophotographic printer. In order to fit 
the sensor along the printer’s paper path, the sensor incorporates 
technology to minimize its physical dimensions, particularly its 
height, as well as optical design technology to perform highly 
accurate colorimetric measurements on output sheets being 
delivered in the printer. Using these technical approaches, we 
achieved the world’s smallest spectrophotometric sensor with a 
built-in illumination light source. And locating the sensor along 
the printer’s paper path facilitates inline color calibration, 
including precise colorimetric measurements of the output sheet. 

The developed sensor has been included on Canon’s 
imagePRESS C10000VP printer series, announced in September 
2015. The printer offers an extra dimension of automatic 
calibration functionality, by supporting precise color tone 
correction, over conventional gradation adjustment. 

Here, we will report on the optical technology that is a key 
in reducing the photometric sensor’s footprint and also the 
practical application of the sensor. 

 

Overview of the Small Spectrophotometric 
Sensor 

Fig. 1 shows the basic configuration and components of the 
small spectrophotometric sensor, and Table 1 lists its main 
specifications. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Diagram of sensor. 

The sensor adopts the Rowland type spectrometer structure, 
which has an advantage in making it small because of its 
simplicity. Inside the sensor chassis are an illumination light 
guide, a light guide for light reflected from the colorimetry 
target, a slit, and a concave reflective diffraction grating. The 
diffracted light is detected with a CMOS linear image sensor. 

A circuit board with the microprocessor chip that performs 
the sensor’s calculations and a white surface-mount LED that 
serves as the illumination light source is mounted underneath the 
chassis on the outside. 

Table 1. Sensor specifications. 

 
 
 
 
 
 
 
 
 
 
 
 

Instrument size W53mm×D35mm×H18mm

Filter Not available

Light-illuminating / Light-receiving 45°/  0°

Illumination method Illuminating with one direction

Light receiving element CMOS linear image sensor

Spectral method Concave diffraction grating

Light source White LED

Spectral range 400nm－700nm

Spectral resolution 10nm

Measured value
Spectral reflectance and
CIE-L*a*b* value (D50/2°)

Reflectance range 0～110%
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Fig. 2 provides a schematic diagram of the sensor’s optical 
system. Light emitted from the LED passes through an aperture 
in the chassis’s bottom surface and enters the illumination light 
guide. The light rays pass through the cover glass, via the light 
guide, and strike the colorimetry target located above the 
schematic. 

Light reflected from the colorimetry target is collected with 
the reflection light guide. The light rays are bent 90 degrees and 
directed to the slit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Diagram of sensor. 

As Fig. 3 illustrates, a Rowland type spectrometer locates a 
slit and a diffraction grating on the Rowland circle. Diffracted 
rays of the same wavelength gather at the same position along 
the Rowland circle. By placing a linear image sensor as a 
photodetector at these positions, it is possible to detect the 
intensity distribution of the diffracted rays dispersed by 
wavelength. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Rowland type spectrometer. 

Optical Design 
The optical system’s design and technology were 

particularly important for making the sensor small and achieving 
high colorimetric measurement accuracy. 

Designed for making the sensor small 
The design of the receiving optics is the most important 

technology in reducing the size of the sensor, particularly in 
minimizing the sensor’s height. Fig. 4 illustrates a schematic 
diagram of the sensor’s reflection light guide. The reflection 
light guide has a convergence effect, in which the light rays 
reflected from the read region are made almost parallel by the 
incident surface of the convex spherical surface. 

The light rays collected at the incident surface are entirely 
reflected by the reflection facet (A), which is placed at a 45-
degree angle to the light rays, and thereby directed at the slit. 

 
 
 
 
 
 
 
 
 
 
 

Figure 4. Reflection light guide. 

In other words, the light rays reflected from the colorimetry 
target and collected at the incident surface are bent in a plane 
parallel to the colorimetry target plane by the reflection facet (A). 
The diffraction grating — which disperses the light rays after 
passing through the slit — and the line sensor — which receives 
the diffracted rays from the diffraction grating — are also 
positioned in a plane parallel to the colorimetry target plane, as 
shown in Fig. 2. This configuration enabled us to minimize the 
height of the sensor. 

Fig. 5 illustrates the difference in sensor height when using 
two different configurations. In Configuration 1, the light rays 
collected at the reflection light guide’s incident surface are bent, 
whereas in Configuration 2, they are not bent. 

This demonstrates that the bending optical design can 
shrink the optical system height to 1/3rd. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Height comparison. 

Designed for paper-path colorimetric 
measurements 

As stated in Introduction, the sensor was developed on the 
assumption that it would be located along the paper path of an 
electrophotographic printer and that the colorimetry target would 
be an output sheet being delivered in the printer. One of the first 
issues observed by taking colorimetric measurements of output 
sheets while being delivered is positional variations in the output 
sheet’s vertical direction (i.e., perpendicular to the paper surface) 
caused by the delivery action. 

The sensor design must minimize the impact of positional 
variations on the colorimetry results even in conditions where 
the distance between the sensor and the colorimetry target varies. 
This is an issue not seen on conventional offline colorimetric 
devices, which assume measurements are taken with the aperture 
pressed against a stationary colorimetry target or with the 
colorimetry target fixed by some means, such as electrostatic 
attraction.  
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Simulations were used to determine the optimal 
illumination optical system. We simulated the line sensor’s light 
reception variation characteristics (i.e., the depth characteristics) 
caused by variations in the colorimetry target’s vertical position 
when using a white lamp type LED as the illumination light 
source. Fig. 6 summarizes the simulation results.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Sensor output variation using lamp type LED. 

The simulations showed that when using a lamp type LED, 
positional variations produced significantly large sensor output 
variations that could not be ignored in a colorimetric sensor 
being designed for advanced color matching. From this result, 
we realized that the illumination optical system required 
improvements. 

We next tried a white surface-mount LED as the sensor’s 
illumination light source and adjusted the optical path design of 
the illumination light guide to see if we could achieve a flatter 
depth characteristic. 

Fig. 7 shows a cross-sectional schematic diagram of the 
sensor’s illumination light guide. Surface-mount LEDs have an 
angular light distribution characteristic, in which the maximum 
light intensity is produced at an angle of around 90 degrees to 
the emitting surface, with the light intensity steadily tapering off 
as the angle from the perpendicular increases.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Illumination light guide. 

Fig. 7 depicts the optical paths of three light rays — L1, L2, 
and L3 — emitted from the LED. The light rays emitted from 
the LED enter the illumination light guide’s incident facet (B) 
directly above the LED, where each light ray is refracted. Next, 
the light rays enter and completely reflect off reflection facet (C). 
The totally reflected light rays are refracted again by refraction 
facet (D) or (E) before reaching the colorimetry target. By 
directing the emitted light rays to the colorimetry target with the 
effect of the reflection and refraction facets that are angled for 

the strongest light ray L1, we can reduce fluctuations in the light 
intensity that reaches the colorimetry position even when the 
distance to colorimetry target’s surface is subjected to variations. 
Fig. 8 reproduces the simulation results of the depth 
characteristic when the sensor’s illumination light guide is used.  

This result indicates that variations in the received light 
intensity at the sensor, caused by variations in the colorimetry 
target’s position perpendicular to the sensor, are greatly reduced 
when a surface-mount LED and illumination light guide are used 
in comparison to when a lamp type LED is used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Sensor output variation using surface mount LED and illumination 
light guide. 

In order to form and measure the color of many calibration 
patches on output sheets being delivered at high speed, light 
reflected from the patches must be collected very efficiently. 
The sensor is constructed so that light reflected from reflection 
facet (A) of the reflection light guide described above converges 
at the slit position (Fig. 9). 

With this configuration, light passing through the slit has an 
intensity of about twice as that of a configuration in which 
reflection facet (A) does not converge the light rays. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Diagram of concentrated reflection light. 

ImagePRESS C10000VP 
The imagePRESS C10000VP, which was announced in 

September 2015, is the flagship model of the imagePRESS 
production printer series. In addition to providing stable high-
speed output of 100 images per minute (LTR), the fastest speed 
among the series’ color models, it offers both high image quality 
and high reliability. 

Additional functions and sensor mounting 
The imagePRESS C10000VP series, in addition to auto 

gradation adjustment for each CMYK color, uses the sensor 
developed in this paper to automatically correct the color tone of 
compound colors (multicolor calibration). A single button 

‐6%

‐4%

‐2%

0%

2%

4%

6%

‐0.5 ‐0.4 ‐0.3 ‐0.2 ‐0.1 0 0.1 0.2 0.3 0.4 0.5

Se
n
so
r 
o
u
tp
u
t 
va
ri
at
io
n
(%

)

Position variation (mm)

B

C D

E

L1 L2 L3

LED

Illumination light guide

Cover glass

‐6%

‐4%

‐2%

0%

2%

4%

6%

‐0.5 ‐0.4 ‐0.3 ‐0.2 ‐0.1 0 0.1 0.2 0.3 0.4 0.5
Se
n
so
r 
o
u
tp
u
t 
va
ri
at
io
n
(%

)
Position variation (mm)

105Printing for Fabrication 2016 (NIP32)



 

 

automatically controls chart printing, color measurements, and 
correction, thereby automating the sequence of operations for 
gradation adjustment and color tone correction. 

 
 
 
 
 
 
 
 
 

Figure 10. imagePRESS C10000VP. 

The imagePRESS C10000VP series uses four sensors 
mounted in parallel at the switchback paper path after the fusing 
unit. 

 
 
 
 
 
 
 
 
 
 

Figure 11. Mounted sensors. 

Calibrating operation 
This section describes the colorimetric measurement 

process on the imagePRESS C10000VP series for auto gradation 
adjustment and auto color tone correction. 

The top speed of the previous imagePRESS C7000VP 
model  was 70 ipm (single-sided LTR) [1], whereas the new 
imagePRESS C10000VP model has a top speed of 100 ipm 
(single-sided LTR). To achieve this spec, the paper delivery 
speed had to be increased, which presented the following issues 
for the colorimetric measurement process: 

•positional variations in the vertical direction. 
 (i.e., perpendicular to the paper surface); and 

•limits on colorimetric measurement patches . 
(size and number of patches, number of sheets). 

The faster the paper delivery speed, the larger the positional 
variations of the test charts will be in the vertical direction, due 
to shocks from the paper passing / touching transport guides, 
transport rollers, and backup rollers that operate during 
colorimetric measurements. 

Furthermore, to average the colorimetric measurements 
within one patch, the faster the paper delivery speed, the larger 
the necessary patch detection area, provided that the number of 
samples and the sampling frequency are the same. This means 
the patch size must be made larger. However, if the patch sizes 
are made larger, more test charts will be needed for auto color 
tone correction, which will worsen the usability. 

We resolved these issues for the imagePRESS C10000VP 
series by optimizing the paper delivery speed and making 
colorimetric measurements with the sensor after the switchback 
in the switchback paper path that follows the fusing unit. 

Conclusions 
In this paper, we reported on the development of a small 

spectrophotometric sensor that can be mounted inside a color 

printer and detailed the application of technologies to reduce the 
sensor size and raise its colorimetry accuracy. 

The imagePRESS C10000VP series of printers have been 
equipped with the sensor discussed in this paper, enabling 
automatic execution of color tone correction that corrects the 
color balances of compound colors, in addition to conventional 
single-color gradation adjustment, without requiring user 
intervention. 
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