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Abstract 
High-speed inkjet printing system is growing in recent 

years. Laser-drying technology can dry inks in a very short 
time (~100ms). This technology has advantages of applicability 
for various paper types and suppressing paper deformation 
because heating is focused on an ink without heating a paper. 
Furthermore, this technology can control occurrence of density 
variation due to migration and flow of an ink on offset-coated 
paper by rapid drying. Exposure condition of laser was 
optimized using high speed camera and drying mechanism was 
discussed by comparing simulation and actual observations.  

Introduction  
Conventional inkjet (IJ) continuous feed printing systems, 

which are aimed at the commercial printing market, pose a 
problem for users in that the systems are becoming very heavy. 
This is because the system’s ink drying equipment, e.g., metal 
drum-type dryers, are becoming increasingly large to enable 
printing at higher speeds.  

To address this problem, Fuji Xerox is researching a new 
ink drying method, which is called laser drying technology, 
with the dual objectives of downsizing current high-speed IJ 
continuous feed printing systems and enabling high image 
quality. This drying method enables heating of the ink alone 
over a short period of time using a compact laser that outputs 
near-infrared light. Because the paper is not heated, drying is 
then possible with little effect being derived from the thickness 
and composition of the paper. Thus, from this perspective, the 
proposed method can be expected to become highly versatile 
system.  

In previous research, when printing using IJ paper and 
using laser exposure to dry the ink over a period of time of the 
same order as the ink penetration time, advantages were 
observed in terms of image quality, including reduced bleeding 
and show-through [1]. However, offset-coated papers are used 
widely in the commercial printing market, and the ink 
penetration is thus extremely slow because of the coating layer 
on the paper surface. When the ink attaches to the paper, a 
spotted “uneven density (large variation in optical density),” 
which is known as “mottling” [2], occurs on images when a 
particularly high printing rate is used. Because it is difficult to 
control this uneven density when using conventional drying 
methods, ways to control the rheological characteristics of the 
ink (ink flow) through methods such as changes to the ink 
composition and treatment of the paper using a pre-coating 
layer [3], [4] are being reviewed. However, when using the 
former method, it is difficult to establish both discharge 
stability and dryness, and when using the latter method, larger 
equipment is required, which in turn increases costs.  

In our research, ink was dried by laser exposure to produce 
printed images when using offset-coated paper.  Additionally, 
to control the uneven density problem when using laser drying, 
the laser exposure conditions were optimized based on the 
results of observations using a high-speed camera and a 

mechanism of uneven density analyzed based on fluid 
simulations.  

As a result, the application of this drying method to offset- 
coated paper is shown to be both feasible and effective for 
uneven density control. 

Experimental Setup 

1) Laser Exposure Experiment 
Figure 1 shows a rough illustration of a printer with the 

proposed laser drying equipment. The IJ printhead and the laser 
exposure equipment are fixed, and the printing and laser 
exposure processes are performed by moving the stage on 
which paper is placed. The laser beam width is 10 mm, and the 
distance from the rear end of the IJ printhead to the area where 
the laser exposure begins is 25 mm. Therefore, when the stage 
speed is 50 m/min, the time interval from the printing process 
to laser exposure is approximately 30 ms. In this case, a matrix-
type piezo-driven printhead was used for the IJ printhead, a 
JOLD-120-CPNN-1N940 (Jenoptik Laser) was used for the 
laser diode. In addition, the model ink (water-based pigment 
ink) that was used for the experiment was created to ensure that 
the uneven density effects can be observed easily. 

 

 
Figure 1. Experimental setup for laser exposure after ink jetting 

 
Figure 2. Experimental setup for observation of inks on paper using high-

speed cameras 
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2) Observation of Ink Droplet Behavior 
Figure 2 shows a rough illustration of the high-speed 

camera system to observe ink droplet behavior when the ink 
lands on the paper. The FASTCAM-APX RS 250K camera 
(Photron) and the VW-6000 motion analysis microscope 
(Keyence) were used for the camera system. Ink was jetted 
while moving the IJ printhead, which was placed on the 
movable stage, and the temporal changes in the ink droplets on 
the paper were then observed using the fixed high-speed 
camera observation system. The arrangement of the camera and 
the shooting method (reflected light observation/projective 
observation) were selected in accordance with the size and 
scale of the observation target.  

Results  

1) Application of Laser Drying to Offset-Coated 
Paper  

The time taken from the point at which the ink lands on 
the paper to the time when it penetrates completely (ink 
penetration time) was found to be approximately 100 ms for IJ 
paper but more than 1 s for the offset-coated paper.  

Figure 3 shows the optical density of the printed surface 
on both IJ paper and offset-coated paper when the interval from 
printing to laser exposure is varied for a coverage of printing 
area (Cin) of 100%. 

On the IJ paper, the optical density is improved by laser 
exposure within the ink penetration time, because the pigment 
in the ink remains on the paper surface. A shorter interval also 
generates a significant increase in the optical density. 
Meanwhile on the offset-coated paper, the optical density is 
higher than that on the IJ paper, even without laser exposure, 
because the pigment in the ink is trapped in the coating layer on 
the paper surface. At the same time, because both the 
penetration and drying processes are extremely slow, ink flow 
occurs easily, and this results in uneven density. 

2) Improvement of Uneven Density using Laser 
Exposure 

Ink Behavior Observation Experiment 
Figure 4 shows the results of observations of an image that 

changes immediately after being printed at high print speed. 
There is no uneven density on the printed surface just after 
printing, with the exception of the white line, but as time 
subsequently passes, mm-order mottling was generated.  

Figure 5 shows the changes with time of the mottle index 
value when Cin=20% to 100%. The mottle index values were 
quantified by performing a frequency analysis of the luminance 
distribution within the surface of a printed image that was 
observed using the high-speed camera. A mottle index value of 
≥10 is a level at which the mottling can be visually recognized 
in sensory evaluations. At a low printing rate of Cin=20%, the 
ink droplets are distributed independently, and the mottle index 
value remains at a low level because the ink droplets do not 
move much or change their shape after printing. In contrast, at 
higher printing rates, neighboring ink droplets connect together 
to generate a flow, and the mottle index value increases over 
the period from 1 to 2 s after printing. In particular, when 
Cin≥80%, the mottle index value increases significantly, and 
the mottle index value exceeds a value of 10 a few hundreds of 
milliseconds after printing. Based on the above analysis, it was 
found that mottling, which is an image quality problem, is only 

formed in images at a high printing rate, and that the time scale 
for mottling formation is thus a few hundred milliseconds after 
printing.  

Figure 6 shows the luminance (density) distribution of an 
image at Cin=100%, with Figure 6(a) showing the image 0 s 
after printing, and Figure 6(b) showing the image 0.5 s after 
printing. Immediately after printing, there is an almost flat 
luminance (density) distribution, but after 0.5 s (Figure 6(b)), 
the densities of the image edges become high (luminance 
drops), and the so-called “coffee stain” was observed. Based on 
the above observations, it was found that the shape of the 
uneven density area differs depending on the printing rate, and 
at high printing rates in particular, mottling and coffee stains 
are both formed. The time order at which these problems start 
to form is again a few hundred milliseconds after printing. 

 

 
Figure 3. Optical density changes relative to time interval 

   
Figure 4. Image inhomogeneity on offset-coated paper at (a) 0 s and (b) 

10 s after printing 

 
Figure 5. Time dependence of mottle index value with various values of 
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Figure 6. Luminance profile along cross-section of Cin=100% image (low: 

dark; high: light): (a) 0 s, flat; (b) 0.5 s, coffee stain 

 
Figure 7. Inhibition effect of laser exposure on uneven density 

Uneven Density Improvement using Laser Exposure 
When using laser drying equipment, it is possible to 

perform laser exposure for dozens of milliseconds after printing 
takes place. Therefore, at high printing rates, it is possible to 
control the generation of uneven print density by performing 
laser exposure before the uneven density area forms. 

Figure 7 shows the images at Cin=100% (a) without laser 
exposure, and (b) with laser exposure performed 30 ms after 
printing. The image without laser exposure shows an increased 
density around the edges of image, while the density at the 
center of the image falls, indicating that an uneven density that 
is a result of the coffee stain phenomenon occurs. When the 
laser exposure energy is increased to approximately 2.0 J/cm2 
(for a paper surface temperature of 100°C), the uneven density 
then improves. 

Figure 8 shows the laser exposure energy and its 
relationships with the ink temperature on the paper surface and 
the amount of liquid ink remaining on the printed surface after 
laser exposure. When the laser exposure energy is 
approximately 2.0 J/cm2, the ink temperature reaches 100°C, 
and the amount of water in the ink after laser exposure falls to 
approximately 10%. In addition, as shown in Figure 9, the ink 
viscosity suddenly increases after evaporation of the water from 
the ink. In this way, it was found that laser exposure increases 
the ink temperature over a short period of time, thus causing 
rapid evaporation and thickening of the ink, and enabling 
control of the uneven density problem. 

Simulation Analysis 
The mechanism for improvement of the uneven print 

density based on laser exposure, as shown in Figure 7, was 
investigated using fluid simulations that take pigment 
deposition based on ink evaporation into consideration. The 
general-purpose fluid analysis software Flow-3D (Flow 
Science) was used to perform the analysis.  

According to the literature [5], coffee stains are reported to 
be formed based on the following conditions and processes. (1) 
Immediately after an ink droplet lands on a paper surface, the 

edges of the ink droplet become pinned (i.e., fixed) to the 
paper. (2) The evaporation rate is faster around the edges of the 
ink droplet than at the center. (3) As the evaporation progresses, 
the shape of the ink droplet changes, and an outward flow from 
the center towards the edges is generated. (4) Because of this 
outward flow, the solids contained in the ink move toward the 
edges of the ink droplet. (5) The pigment is deposited from the 
edges of the ink droplet and then accumulates.  

The simulation results are shown in Figure 10. The 
calculation conditions were set as an ink viscosity of 6 mPas, 
surface tension of 30 mN/m and pigment content of 10 wt.%. 
The edges of the ink droplet were fixed, and an evaporation 
speed that is equivalent to that of natural drying was applied to 
the gas-liquid interface. Figure 10(a) shows that the 
reproduction of an outward flow from inside the ink droplet 
towards the edges and pigment deposition at the edges of the 
ink droplet as the evaporation process progresses were possible. 
The broken line shown in Figure 10(b) represents the pigment 
density distribution in the ink droplet radius direction.  

Next, an analysis was conducted based on the conditions 
of an increasing ink evaporation rate and rapidly progressing 
thickening due to the laser exposure. The pigment density 
distribution for this analysis is represented by the solid line 
shown in Figure 10(b). When comparing the results for the two 
sets of conditions, it was confirmed that an increase in the 
viscosity and the evaporation rate led to a reduction in the 
pigment density that was deposited around the edges of the 
image, and the distribution became flatter overall. This 
indicates that control of the ink flow is effective in improving 
an uneven density.  

 

 
Figure 8. Surface temperature and water content remaining in ink after 

laser exposure 
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Figure 9. Relationship between viscosity and evaporation rate 

 
Figure 10. Simulated results of (a) coffee stain, flow pattern in the droplet 

and deposition of pigment; (b) effects of evaporation rate and viscosity on 

coffee stain  

Conclusions 
In our research, laser drying on the offset-coated paper 

was investigated. The mechanism behind the occurrence of 
uneven densities and the time order of the mechanism were 
analyzed. Additionally, by making the ink evaporate rapidly 
using laser drying technology, it was verified that control of the 
uneven density problem is possible. As a result, the following 
points were determined: 

Based on high-speed camera observations, the time scale 
of the uneven density (mottling, coffee stains) formation that 
occurs at high printing rates is of the order of a few hundred 
milliseconds. 

The uneven density problem can be controlled using laser 
drying equipment and by performing the laser exposure over a 
shorter time period than the uneven density formation time at 
high printing rates.  

Based on coffee stain simulations, it was confirmed that 
when the ink is made to evaporate and thicken rapidly, the 
outward flow from the center of the ink droplet towards the 
edges and the transfer of the pigment to the edges are both 
controlled, and it is thus possible to improve the coffee stains.  

Laser drying technology thus offers a method for ink 
drying for which there are high expectations for improved 
image quality on both IJ paper and offset-coated paper.   
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