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Abstract 
A high-speed digital production printer using an aqueous 

piezo-on-demand inkjet is considered in terms of its high-speed 
applicability to electrophotography, which also enables digital 
printing. Further enhancement of the printing speed and 
improvement in the image quality will require control of the 
satellite drops that are generated during ink jetting. Further 
versatility is necessary for use of paper types that require 
printing without ink penetration, and as a result, the reliability 
of moisture evaporation in ink becomes increasingly important.

Introduction 
In the 1990s, inkjet printers grew rapidly in popularity with 

the increasing prevalence of computers, and these printers were 
enabled by properties such as high image quality production by 
multi-pass printing, penetration control of both ink and paper, 
and high reliability with respect to evaporation control of the 
water by addition of moisturizing agents to the ink.  

In the 21st century, along with the progress in Internet 
technology, there has been remarkable growth in production 
printers enabled by inkjets and also by electrophotography, 
which enable realization of on-demand and variable digital 
printing. [1]  

At present, printing jobs are completed using inkjet paper 
with medium image quality; however, it is natural that the 
customer may require higher image quality. Simultaneously, to 
ensure compatibility with other printing jobs, it is necessary for 
the printer to be compatible with offset coated paper, which is 
slowly permeable; additionally, applicability to nonpermeable 
media is expected to be a requirement for industrial package 
printing in the very near future. To meet these expectations, 
technologies that operate at a higher level than the established 
performance levels of conventional inkjets or revolutionary 
breakthroughs that transform the current operating principles are 
required.   

Inkjet vs. Electrophotography 
Table 1 presents a comparison between the world’s fastest 

(by author survey) electrophotography machines and typical 
continuous-feed inkjet printers [2]. In inkjet printers, the 
printheads are aligned to the page width and the driving 
frequency is enhanced to be close to the response limit, resulting 
in printing speeds of 100 m/min. While there is no major 
difference between this speed and that of monochrome 
electrophotography, which is 91 m/min, inkjet printers can 
easily be enhanced to speeds of 200 m/min by doubling the 
number of printhead bars and the paper speed. 

Figure 1 compares the printing principles of 
electrophotography and inkjet printing. Because the process 
numbers are small in inkjet printers, and also because there is no 
contact process such as the“transfer”stage in electrophotography, 

it is thus easier to increase the printhead numbers; this, 
combined with the independence of the process from the paper 
motion, enables faster operation in inkjet printers.  

Additionally, the ink begins to penetrate immediately after 
landing on the paper and is then fixed, while toner remains 
unstable on the paper until the fusing process. Inkjet printing 
should therefore be recognized as the principal high-speed-
applicable process. 

Satellite 
In inkjet printing, the streaks that occur because of nozzle 

clogging or jet misdirection are critical issues and multi-pass 
printing methods are thus generally applied. The number of 
passes is decided based on a balance with the required printing 
speed, allowing for only one pass to be used by a production 
printer to meet market requirements.  

When multi-pass methods cannot be used, the dot 
placement and shape must be precise to obtain high image 
quality. Because the flying jet that becomes a dot is in a column 
configuration, there are time differences between the head and 
the tail of the jet, resulting in image defects such as dot splitting; 
therefore, faster jetting velocities are preferred. 

Products Colors Colorant
Res.
(dpi)

Width
(inch)

Printing
fixtures

Speed
(m/min)

EP color 4 Toner 600 18.5 1 69

EP mono 1 Toner 600 18.5 1 91

IJ 100 4 Ink 600 20 1 100

IJ 200 5 Ink 600 20 2 200

Table 1 Specifications and structural elements of high-speed 
printers

Figure 1 Factors in high-speed printing and fundamental process 
comparisons between electrophotography and inkjet printing (dotted 
line: contactless; solid line: contact; double lines: either type) 
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Additionally, the occurrence of the satellite drops that 
commonly form in inkjets are a particularly critical issue. As the 
paper transportation speed increases, the distance between the 
locations on the paper where the main drop and the satellite 
drop land also increases, and thus adversely affects print quality. 

The printer described above [2] has a jetting frequency of 
40 kHz at 600 dpi, which is equivalent to a repetition period of 
25 μs. The market requires a higher resolution of 1200 dpi while 
maintaining the same operational speed, which would mean a 
jetting frequency of 80 kHz or a period of 12.5 μs. Therefore, in 
the printhead, a shorter piezoelectric waveform period that 
would eliminate the satellite drops is allowed, thus resulting in a 
minimum of two (double) pulses for the jetting drive. 

Figure 2 shows the piezoelectric waveform used for jetting 
by double-pulse driving that consists of the driving (operating) 
voltage (Vop), the first (main) pulse width (Tmain), and the pulse 
interval (Tint) as adjustable parameters, and the second (post) 
pulse width (Tpost) as a fixed parameter at 2 µs. 

Figure 3(a) and (b) show the jetting conditions achieved 
with double-pulse driving when observed (a) 300 μm and (b) 1 
mm from the nozzle with a main pulse width of 3.4 μs and an 
interval time that varies from 1.0 to 10.0 μs. When the interval 
time is shorter than 1.6 μs, as shown in Figure 3(a), it is 
considered that the main drop becomes small while the satellite 
drop becomes large because the post-pulse is applied too early, 
thus resulting in inadequate oscillation.  

When the interval time exceeds 6.0 μs, the second drop is 
jetted because the post pulse is applied after jetting of the main 
drop is complete. Figure 3(b) shows that a satellite-free range is 
obtained, and additionally shows that the most suitable 
conditions are a main pulse width of 3.4 μs and an interval time 
ranging from 2.6 to 5.0 μs until the second drop appears. 

Figure 4 presents an observation of the jetting from the 
nozzle to a distance of 1 mm with a time step of 8 μs under 
satellite-free jetting conditions. The jet separates from the nozzle 
meniscus and the main drop and the filament then remain 
connected as the main drop “tugs” on the filament for 
approximately 8 μs. Subsequently, the filament separates from 
the main drop and becomes a spherical satellite before finally 
merging with the preceding main drop. The filament is 
considered to separate and become spherical because of the 
surface tension of the ink. 

In general, satellite drops do not appear when the drop 
velocity is low but tend to gradually appear as the drop velocity 
increases. Therefore, the required drop velocity (Vd) for high-
speed printing is assumed to be more than 6 m/s in this 
experiment and the jet observations were thus made at drop 
velocities of 6, 8 and 10 m/s by adjusting the driving voltage 
and the waveform; the parameters were varied as shown in 
Figure 3 at a distance of 1 mm from the nozzle. The duration of 
the tugging action of the filament, as described above, is 
considered to be affected by the filament velocity; therefore, this 
dependence was investigated with the expectation of collection 
of multiple data to aid in understanding of the overall trends. 

Figure 5(a), (b) and (c) present the dependence of the 
filament tail velocity on the tugging time, where each plot was 
measured for different pulse parameters; crosses indicate that the 
satellite remains separated, while filled circles indicate that the 
satellite drop moves forward and merges with the main drop. 
The filament velocity becomes higher than that of the main 
drop; this means that the satellite merges when the tugging time 
exceeds 5 μs and the main drop travels at 6 m/s, as shown in 
Figure 5(a), and also when the tugging time exceeds 10 μs and 
the main drop travels at 8 m/s, as shown in Figure 5(b).  

However, the filament velocity does not reach the main 
drop velocity and the satellite drop is thus not free when the 
main drop velocity is 10 m/s, as shown in Figure 5(c). 

Based on the extrapolated line in Figure 5(c), it is predicted 
that the filament velocity will reach the main drop velocity at a 
tugging time of 20 μs. However, the filament velocity does not 
increase with an increase in the main drop velocity, while 
simultaneously the satellite drop velocity does not increase and 

Figure 2 Driving waveform applied to a piezoelectric actuator 
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the tugging time decreases. This means that for this printhead, 
an increase in the drop speed and satellite-free conditions are 
not compatible in the control of the waveforms [3]. 

Penetration 
 Coloring of the paper by ink penetration is the basic 

principle of inkjet printing. Bleeding occurs on plain paper 
because the ink penetrates along the fibers; SiO, CaCO3 and 
water soluble polymers are therefore added into or onto the 
paper and the image quality, including aspects such as the 
sharpness of characters and the color gamut area, are then 
improved. Additionally, conventional printers do not need a 
dryer because the ink is designed to dry naturally. Therefore, the 
use of coated paper, which is slowly permeable, in offset 
printing goes against the principle of inkjet printing. 

Figure 6 shows the observed results of the penetration of 
two continuous ink drops on (a) inkjet paper, where the 
penetration is completed in less than 0.1 s, resulting in printing 
of separated dots on the paper, and (b) offset-coated paper, 
where the penetration requires more than 1 s, and where two ink 
drops are also coalesced within a millisecond and shifted on the 
paper, resulting in printing of the single large and uneven dot 
shown in Figure 6(b). 

Therefore, when printing on coated paper, the dryer must 
eliminate all ink solvents rapidly; this means that moisturizing 
agents such as glycerin, which have a higher boiling point than 
water and are conventionally contained in the ink to prevent 
nozzle clogging due to evaporation, are limited in their use. 

The coalescence of ink drops that is shown in Figure 6 
occurs naturally on high coverage areas. When compared with 
Figure 7(a), which is printed on inkjet paper, Figure 7(b), which 
is printed on coated paper, shows the “mottling” problem that 
occurs in color images in particular because of the coalescence 
and shifting of undried drops. 

To manage these characteristics, drying of the water 
mentioned above on coated paper is actually possible because 
the dryer incorporated in the production inkjet printer itself is 
powerful, and adhesion of the pigments to the coated paper is 
also possible because the dispersing agent of the pigments 
contains resin or latex, which basically acts as an adhesive. 
Consequently, monochrome images can be printed on the coated 
paper using the optimized and compatible ink without changing 
the printer hardware; for example, additional printing of 
personal and/or variable information on offset pre-printed paper 
can be provided as outputs for transpromotional marketing 
purposes. 

 Mottling, which occurs when the color and density are 
high, is prevented by the pre-coated layer on the paper, which is 
conventional in inkjet technology, and which allows the ink 
pigments to be coagulated and anchored. 

As demonstrated at the drupa 2016 exhibition, future 
candidate solutions include: the ink itself, which can print on 
nonpermeable media; the coated paper itself, which is applicable 
to aqueous inkjet printing as a plain paper in production 
printing; and the supporting system, which uses intermediate 
stages, heating and other solutions. After these improvements 
have been made, it is expected that inkjet printing will be able to 
overcome the issue of inkjet bleeding on plain (low cost) paper 
over a period of a year. 

0

2

4

6

8

10

12

-10 0 10 20 30

0

2

4

6

8

10

12

-10 0 10 20 30

0

2

4

6

8

10

12

-10 0 10 20 30
Tugging Time  (μs) 

Fi
la

m
en

t  
ta

il
Ve

lo
ci

ty
 (m

/s
) 

(a) Vd at 1 mm
= 6 m/s

(b) Vd at 1 mm
= 8 m/s

(c) Vd at 1 mm
= 10 m/s
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Evaporation 
Elimination of the moisturizing agents from the ink leads to 

a recurrence of the reliability concerns related to natural ink 
dehydration. Conventional piezo-inkjet printing uses its ability 
to make the nozzle surface vibrate to dilute condensed inks and 
also refreshes the ink around the nozzle by recirculation; this 
results in a highly reliable system [4], in which the jetting 
phenomenon observed as “V-shape recovery” has also attracted 
the interest of ink researchers [5]. 

Research activity into water evaporation, and particularly 
into understanding of the evaporation from micro nozzles, is 
also considered to be increasingly important; the authors have 
previously demonstrated that it is possible to estimate both the 
surface tension and the viscosity of the flying drops [6]. 

A method to estimate the vibration caused by the collision 
of the satellite drop with the forward main drop was 
demonstrated based on the experiments on observation of 
satellite drops in this report and the evaporation experiments 
that are described above. Figure 8(a) shows the results of 
observation of flying drops using a time step of 1 μs, where the 
vibration behavior corresponds well with the results of 
simulations performed using Flow 3D, which are presented in 
Figure 8(b). In other words, the relationship between the 
properties of the liquid and the vibration phenomenon [7] is 
well understood; i.e., in the case of a simple second mode 
vibration, the vibration period is controlled by the surface 
tension of the liquid, and the damping is controlled by the 
viscosity. 

Figure 9 presents the results for the surface tension relative 
to the non-jetting time that were obtained by jetting of deionized 
water that contained a surfactant and measurement of the 
resulting vibration cycle. The reduction in surface tension in this 
experiment occurs 0.3 s later than that of water; this is thought 
to be the time required for the surfactant to coordinate with the 
liquid surface. 

An ink film around the nozzle that shuts the air passage and 
that also breaks easily when pushed by the jetting oscillation has 
long been desired and discussions have recently started with 
regard to the actual configuration of film forming agents at the 
ink-air interface [8]. Such an ink, where the evaporation is 
controlled by the ink itself, is the ideal for inkjet printing. 

Summery 
The breakthroughs required for use of aqueous inkjets in 

production printing are considered to be high-speed satellite-free 
jetting, printing on nonpermeable media and evaporation control 
by the ink itself. 

While inkjet technology has long been established and used 
for home/small office, photographic and wide format printing 
applications, there is another chance to innovate in this 
technology by facing the challenges in production printing, 
which are rather different from the challenges faced in 
microfabrication and 3D inkjet applications. 
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