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Abstract 
A method is demonstrated for studying hydrodynamic 

effects in pulsed electrohydrodynamic (EHD) jetting, for the 
drop-on-demand printing of small droplets. The transient 
behaviour of pulsed EHD jets and the deposition of liquid on to 
a substrate were investigated by using an ultra-high speed 
camera (Shimadzu HPV-1) with a Newtonian aqueous liquid 
(water-glycerol). Time-resolved images of jets induced by two 
consecutive voltage pulses, with different time delays, were 
captured. Image analysis was used to determine the jet length, 
meniscus radius at the nozzle, and deposit volume in each case 
and revealed that the behaviour of an EHD jet depends strongly 
on the delay time after a previous ejection event. The effect 
originates in the time taken for the meniscus shape and position 
to recover to their equilibrium values and plays a critical role 
in the design of printing strategies for EHD drop-on-demand 
applications. It is possible that the maximum printing frequency 
achievable by pulsed EHD jetting can be increased by 
optimizing the drive waveform in order to accelerate recovery 
of the meniscus position. 
Introduction 

Electrohydrodynamic (EHD) jetting provides a method to 
generate ultrafine liquid jets and deposit small drops (sub-
picoliter) through electrostatic forces. A potential is applied 
between the liquid in a narrow capillary tube and a grounded 
plane. When the pressure due to the electric force at the surface 
of the liquid exceeds that due to the surface tension, a charged 
liquid column is emitted from the apex of the distorted liquid 
meniscus[1, 2]. The behaviour of this EHD jet is influenced by 
the electric field, the static pressure in the liquid, and the 
physical properties of the liquid. This technique has many 
practical applications including sample injection for mass 
spectrometry[3], nano-encapsulation of drugs[4], and high-
resolution printing[5].  
EHD printing mainly utilises a transient cone-jet modulated by 
a pulsed voltage to achieve drop-on-demand ejection[5-8]. The 
effects of constant and pulsed bias voltages on Taylor cone 
formation have been studied[9]. The current waveform 
following potential switching has been studied to understand 
the dynamic response of the jet[10]. Fluid ejection and 
deposition following a single voltage pulse have been 
investigated together with the hydrodynamic and electrical 
phenomena inside the capillary[11-13]. Based on a scaling 
law[14] and the pulsating currents detected from the EHD jets, 
the use of a short voltage pulse superimposed on a constant 
lower bias voltage has been proposed to achieve high speed, 
high resolution printing[15].  

Despite much research, the mechanism of EHD jetting is 
still not well understood. In pulsed EHD jetting in drop-on-
demand mode, where a voltage pulse is applied to generate a 
single EHD jet, a discrepancy is found between the number of 
voltage pulses and the number of drops deposited[16-18], 

which limits its practical use for manufacturing applications. 
Moreover, these studies showed that only low frequency 
(O(10Hz)) repetitive jetting can be achieved. Here, we use an 
ultra-high speed camera to study the processes of pulsed EHD 
jetting in drop-on-demand mode and liquid deposition on to the 
substrate. Although time-resolved imaging of EHD jetting has 
been accomplished by others[19-22], most of these 
investigations relied on single-frame cameras and the sequence 
of EHD jetting events was deduced from separate images 
captured at different time delays from numerous different 
events. With this technique the volume deposited during each 
event must be estimated from the average droplet size from 
many events. In our study, the dynamics of transient EHD jets 
induced by two identical, consecutive voltage pulses triggered 
at different time delays were investigated with a high speed 
camera. In this way the drop volumes associated with 
individual EHD jetting events can be tracked and directly 
measured, and the interaction between successive events can be 
studied.  
Experimental apparatus and procedures  

The experimental setup is sketched in Fig. 1. A thin wall 
glass capillary (WPI US Micro-Tip, 30 µm internal tip diameter 
with a tolerance of ±20%) is connected to an electrode holder 
with a wire emitter electrode inserted inside the capillary. The 
capillary is held perpendicularly with its end about 185 µm 
above a conductive grounded substrate. The other end of the 
capillary is directly connected to a hypodermic syringe barrel 
acting as liquid reservoir, attached with an inline membrane 
filter. The air pressure above the liquid is controlled by a 
pneumatic pressure controller. A three-axis motorized stage 
(Thorlab UK MAX313D) is controlled by a LABVIEW 
program. 

 

Figure 1 Experimental setup for high-speed imaging of pulsed 
electrohydrodynamic jetting 
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A high positive potential from a voltage amplifier 
(Matsusada, Japan, AMJ-2B10) modulated by a function 
generator (TTI, USA, TG2511A) is applied between the emitter 
and ground electrodes to generate the electric field. An ultra-
high speed camera (Shimadzu, Japan, HPV-1), capable of 
recording 100 images at up to 1 million  fps , was used to 
capture images of the jetting process via a long working-
distance microscope (Navitar, USA, MVL12X12Z) with an 
extension tube (Navitar, USA, MVL20FA) and a 10× infinity-
corrected objective lens (Mitutoyo, Japan, M Plan Apo). The 
backlit illumination was provided by a flashlamp with a 
duration of about 1 ms. The camera, the flash, and the function 
generator were synchronized through a delay generator 
(Stanford Research, USA, DG535). The liquid used in this 
study was a 40 wt% glycerol- 60 wt% deionized water mixture 
with viscosity and surface tension of 3.7 mPa s  and 68.0 

-1mN m  at 20 °C, respectively. The electrical conductivity and 
the dielectric constant were 12.6 -1µS cm  and 68.8[23]. The 
pressure applied to the liquid reservoir was adjusted to 10 kPa 
to maintain a steady convex meniscus at the capillary nozzle. 
EHD jetting takes place when the electrostatic force 
outbalances the surface tension. Based on published 
guidelines[15], a short duration pulsed voltage superimposed on 
a constant bias voltage was used in this study. The bias 
potential Vb of +400 V was chosen to be small enough not to 
induce dripping, but large enough to maintain the Taylor cone. 
Furthermore, when applying a bias voltage, the effective 
surface tension[11] can be reduced to facilitate ejection at lower 
pulsed voltage. EHD jetting was then induced by the 
application of additional square pulses of +1280 V (i.e. Vp = 
+1680 V) with a duration of 100 µs. The value of the pulse 
voltage was chosen to generate a single EHD jet for drop-on-
demand operation but was not so large as to induce multiple 
ejections[8, 15]. By setting a time delay between the 
consecutive voltage pulses, the interaction of sequential pulsed 
EHD jets can be studied.  

 
Figure 2 Sequence of images (at times indicated in µs) showing jetting 
events resulting from the application of two voltage pulses with a time 
delay of 250 μs. ௣ܸ and  ௕ܸ denote the pulse and bias voltage, respectively. 

Fig. 2 shows the effects of applying two identical pulses 
with a time delay Td of 250 µs. The history of two consecutive 
EHD jets and their dynamics was captured with an 8 µs frame 
interval. The two jets shown in the sequence of frames at the 
top were generated by these two voltage pulses. The first pulse 
initiates the first sequence of meniscus distortion, Taylor cone 
formation, liquid ejection and meniscus relaxation. We can 

estimate the maximum current through the liquid jet from its 
diameter and the conductivity of the liquid to be 27 μA. This is 
very much less than the rated output current of the high voltage 
amplifier (10 mA) and the potential applied to the system did 
not change. The temperature rise in the liquid ligament due to 
Joule heating can be estimated as ca. 10 ℃  over the ejection 
time of 100 μs , too small to cause any significant effects. 
Similarly, there was insufficient electrical energy to cause 
significant electrolysis of the water or other electrochemical 
reaction. At a time of 250 µs after the start of the first pulse, the 
second pulse starts, generating another complete jetting cycle. 
In this case the time delay was not sufficient to allow the 
meniscus to recover its equilibrium shape before the start of the 
second pulse, resulting in a significantly greater volume in the 
second droplet than in the first. 
Results and Discussions 

From individual images of the EHD jets, the length of the 
jet and the volume of liquid deposited on the substrate can be 
measured. The length, measured from the nozzle tip to the 
distal end of the meniscus or liquid column and normalized by 
the gap between nozzle and substrate, is shown in Fig 3 where 
the normalized values 1 and 0 represent the positions of 
substrate surface and nozzle tip respectively.  

 Figure 3 Length of jet normalized by the nozzle-substrate distance plotted 
against time, for two voltage pulses with a delay of 250 μs.  
The tip of the meniscus extends relatively slowly at first, 
accelerating over a period of about 100 µs, and then as the jet 
forms the normalized length increases rapidly to 1 and the jet 
impinges on to the substrate. This occurs over a time period of 
one or two frame intervals, from which we can estimate the 
maximum speed of the jets to be of the order of 20 m/s. Using 
this method a series of jets was measured, created by pairs of 
consecutive pulses with delays (Td) of 333, 250, 200, 167, and 
143 µs. The results are compared in Fig 4. In these experiments 
only the time delay was varied and all other parameters were 
held constant. For all time delays, the first jets were very 
similar and occurred at a constant time of about 120 µs after the 
initiation of the first pulse. The formation of the second jet 
moves closer in time to the start of the second pulse as the time 
interval between the two pulses reduces. While there is little 
effect for Td = 333 µs, the effect increases with reduced pulse 
gap so that there is only a small interval between the two jets 
for Td = 167 µs.  Only a single jet with a longer ejection time is 
formed for Td = 133 µs. Moreover, the total ejection time 
(duration) of the second jet increases as Td decreases. The 
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explanation for this behaviour is that for short intervals the 
recovery time for the liquid meniscus from the first jet overlaps 
with the process of meniscus distortion and Taylor cone 
formation for the second jet. The second jet starts from a non-
equilibrium meniscus position. The time and the electric force 
needed to initiate EHD jetting are thus reduced, and hence as 
the time delay is decreased a wider jet is produced, with longer 
ejection time.  

 
Figure 4 Normalized jet length resulting from pairs of voltage pulses with 
time delays of 333, 200, 167 and 143 μs. 

The equilibrium shape of the meniscus can be 
approximated as a spherical cap attached to the nozzle, and the 
meniscus continues to have a near-spherical surface until just 
before the jet forms. The radius of curvature of the meniscus R 
was calculated from measurements of the width W and height H 
of the spherical cap, from the equation[24] 
ܴ = ு

ଶ + ௐమ
଼ு                                                                                 (1) 

which is valid for H ≤ 0.5W.  Fig 5. shows how R changes as 
the meniscus distorts prior to jetting, and during its subsequent 
relaxation, for jetting with time delays Td of 200, 250, and 333 
µs.   

 

Figure 5 Radius of curvature of the liquid meniscus plotted against time, 
for the delay times indicated. 

For the longest interval (Td = 333 µs) the meniscus has not 
fully relaxed before the second pulse is applied, while for Td = 
200 µs the meniscus does not have time to flatten at all.  These 
observations show how initiating a second pulse during the 
time taken for the meniscus recovery will change the timing 

and duration of the second ejection event. The interactions 
between the formation of EHD jets and the relaxation of the 
liquid meniscus after each jetting event, as shown in Figs. 4 and 
5, imply a limit to the maximum frequency with which EHD 
jetting can be repeated. This may explain the discrepancy 
reported between the number of driving pulses and the number 
of EHD jets generated[16-18]. 

A direct consequence of reducing the time delay between 
pulses is an increase in the deposited volume. By measuring the 
height h and width w of the deposited droplets, the volume of 
deposited liquid V can be estimated from[25] 
ܸ = గ௛

ଶ ቀ௛మ
ଷ + ௪మ

ସ ቁ                                                                      (2) 
Fig. 6 shows the volumes of liquid deposited on the 

substrate, plotted against the time interval (i.e. the time Td – 100 
µs). The measured outer diameter of the nozzle, 47.2 μm, was 
used to calibrate the magnification of the images. The nozzle 
was fully wetted, which avoided any variation in the base 
diameter of the EHD cone[13]. The droplet volumes from the 
first jet are effectively constant for all cases except for the 
shortest interval, when only one large drop was formed. For the 
longest time interval, the volume deposited from the second jet 
was almost the same as that from the first. As the time delay is 
decreased, there is a very significant increase in the liquid 
volume deposited from the second jet.  

 
Figure 6 Volumes of the first and second drops generated by pairs of 
voltage pulses, plotted against the time interval between the pulses 

Conclusion 
We demonstrate here that pulsed EHD jetting in drop-on-

demand mode can be achieved with voltage pulses of 100 μs 
duration and that repeated deposition of the liquid can be 
achieved at about 3 kHz. Also, the relaxation of the meniscus 
position after the formation of a jet plays a critical role in 
determining the ejected volume of a subsequent jet. The time 
needed to restore the meniscus can potentially limit how 
quickly the next jet can be ejected; the influence of these 
hydrodynamic effects must be accounted for in high-throughput 
drop-on-demand EHD printing. The results provide an 
explanation for the discrepancy between the number of driving 
pulses and the number of jets generated in pulsed EHD jetting 
in drop-on-demand mode previously reported [16-18]. 
Although we have studied only two drops in succession we can 
estimate the maximum frequency achievable in repeated jetting. 
If after some delay the first drop has no influence on the second, 
then we can argue that this will continue for further drops and 
hence a continuous stream of drops can be controllably 
produced. The smallest delay at which this occurred in our 
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experiments was around 300 μs. Hence, the maximum stable 
frequency would be approximately 3 kHz. A significant change 
in ejected volume would be expected between 3 and 7 kHz. The 
replenishment of liquid to the nozzle may in principle further 
limit the maximum frequency, but did not play a role in these 
experiments. While recovery of the meniscus shape will depend 
on the liquid properties, our results suggest that it may also be 
possible to accelerate the process, and thus attain a higher 
maximum printing frequency, by designing the drive waveform 
to force the meniscus to regain its original shape more quickly. 
These experimental methods will facilitate fundamental 
understanding of the dynamics of pulsed EHD jetting as well as 
the development of drop-on-demand EHD jet printing. In 
further work this study will be extended to examine the effects 
of the shape of the drive waveform and of liquid replenishment 
on continuous pulsed jetting.  
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