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Abstract 
Inkjet printing offers an attractive route for the 

manufacture of metal oxide films and allows a low-cost, 
environmentally friendly route to manufacture. Here we 
describe a stabilised process for the printing of TiO2 films. This 
has been achieved through the use of a range of titanium (IV) 
ink solutions, employing stabilised Ti(OiPr)4 or titanium oxo-
alkoxide clusters as the source materials. Printed tracks with 
feature sizes of 156μm have been achieved, along with more 
complex architectures of TiO2. XRD analyses shows that the as 
deposited TiO2 is amorphous. 

Introduction; 
Metal oxide thin films and coatings have many 

applications [1] [2]. Conventionally, these oxide coatings are 
manufactured using high temperature vacuum techniques, 
which cover the substrate completely.  However, patterning of 
the metal oxide films is often required for applications. The 
patterning process removes large amounts of the coating 
resulting in an inefficient use of materials. In addition, 
controlling the surface architecture of the deposited films 
during patterning is time consuming and costly. By using inkjet 
printing technology to directly create the desired design, 
material consumption is reduced and fewer processing steps are 
required leading to a cheaper, less materials intensive 
manufacturing process [3]. Employing inkjet printing enables 
film thickness to be easily manipulated through multiple print 
passes and processing temperatures required for post-treatment 
of the films can be reduced by using molecular engineering and 
altering the surface chemistry [4]. 

TiO2 films are prevalent within the literature [5], and are 
used in applications such as photocatalysis [6], thin film 
memristors [7], and hybrid photoconductor materials [8]. 
Although the rutile phase is generally observed at low 
temperatures, the anatase phase is the most catalytically active, 
and therefore usually the desired phase. The use of titanium 
tetraisopropoxide, Ti(OiPr)4, or other titanium(IV) alkoxides as 
starting materials for the deposition of TiO2 is widespread. 

However, due to the high moisture sensitivity of these 
metal alkoxides [9], the use of stabilising ligands and rigorously 
dry conditions are required. Furthermore, titanium oxo-alkoxide 
clusters have been identified as intermediates in the hydrolysis 
of Ti alkoxides to TiO2, and are an area of continued research 
in thin film deposition [10]-[12]. 

The aim of this work is to develop ink formulations for the 
inkjet printing of alkoxide precursors, which undergo a 
condensation reaction with ambient moisture to form TiO2. 
Firstly, ligand stabilised inks containing the simple alkoxide 
Ti(OiPr)4 were investigated, which react once deposited 

according to equation 1. TiO2, the desired product, is formed 
along with volatile iPrOH which evaporates. 

 

Ti(OR)4 + 2H2O → TiO2 + 4iPrOH                                            (1) 

 

More complex Ti alkoxides were also investigated. Ink 
formulations containing small preformed oxo-alkoxide clusters, 
with direct metal oxide frameworks, act as templates to the 
desired final target layer structure. Simple alkoxides react 
according to equation 2 under limited exposure to H2O. Rozes 
et al describe oxo-alkoxide clusters displaying varying degrees 
of condensation, with O/Ti ranging from 0.33-1.55 [12]. 

 

nTi(OR)4 + mH2O → TinOm(OR)4n–2m + 2mROH                      (2) 

 

Following printing, the annealing temperature at which the 
films form the anatase phase of TiO2 is of particular 
importance. The ultimate aim is to produce printed anatase 
TiO2 at lower processing temperatures, reducing costs and 
allowing thermally sensitive substrates to be employed eg. PET 
or PEN.  

Ink formulations 

Table 1: Table to show ink formulations 1-3. 

Ink formulation 1 2 3 

Ti source Ti(OiPr)4 Ti(OiPr)4 TinOm(OR)4n–2m 

Carrier solvent iPrOH iPrOH Toluene 

Stabiliser DME Diglyme None 

 

Initial printing tests were performed using Ti(OiPr)4 in dry 
iPrOH, the parent alcohol. However, the ink solution was too 
unstable to hydrolysis which lead to precipitation and print 
head blockages. The printing of a range of ink formulations 
with a variety of stabilising ligands was then employed. Two 
such ligands utilised in the Ti(OiPr)4 inks were: DME (1,2-
dimethoxyethane) and diglyme (bis(2-methoxyethyl) ether). 
These simple glymes have been chosen for a number of 
reasons, including their capacity to act as both solvent and 
ligand, miscibility with iPrOH, and noncorrosiveness. 
Importantly, they are volatile and so will evaporate cleanly. 
Furthermore, the glymes are capable of kinetically stabilising 
the Ti(IV) metal centre with respect to hydrolysis. Co-
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ordination of H2O to the Ti centre is blocked due to the 
chelating effect of the O-donating glymes.  

 

A concentration of 0.1M with respect to Ti(OiPr)4 was chosen 
for inks 1 and 2, with 5 molar equivalents of stabiliser and a 
carrier solvent of iPrOH. Both 0.05M and 0.15M inks were 
investigated. 0.05M ink suffered from a low titanium loading, 
whereas 0.15M ink had a high tendency to block the print head 
and displayed low print quality. Furthermore, 3.3 molar 
equivalents of stabiliser was also investigated, although this 
resulted in reduced solution stability to atmospheric moisture.  

More complex oxo-alkoxide species have also been 
investigated. Partially hydrolysed Ti clusters display a core 
titanium-oxide bridge structure, comparable to TiO2, and a shell 
or periphery of reactive alkoxide functionality. This may lead to 
lower processing temperature requirements and higher print 
resolutions for TiO2 film deposition in relation to the simple 
alkoxides. Synthesis of the oxo-alkoxide cluster was performed, 
following the experimental procedures described by V. W. Day 
et al [11]. The microcrystalline powder showed poor solubility 
in iPrOH, with acceptable solubility in toluene.  

Figure 1. Ti12O16(O
iPr)16 cluster, with Ti atoms in grey and O atoms in red. 

C and H atoms are omitted for clarity.  

Due to the low concentration of titanium source and 
stabiliser the waveforms obtained for use with the pure carrier 
solvents are still sufficient to generate a steady stream of 
uniform droplets. Thus, the waveforms were not changed when 
printing the titanium loaded inks. 

Printing with stabilised inks 
Initial printing trials for both inks 1 & 2 involved 

screening for ideal printing parameters, namely print speed and 
inter-droplet distance, or step size. A range of both parameters 
was explored through the printing of single tracks, with print 

speeds ranging from 6 to 12 millimetres per second (mmps) and 
ranging from 0.05 to 0.2 mm step size. Ink 1 displayed optimal 
track printing conditions of 6mmps and 0.1mmss, whereas ink 
2 displayed optimal track printing conditions of 8mmps and 
0.1mmss. Figures 2 (a) and (b) show the respective print tracks. 
A 100x100 pixel square array was also printed with inks 1 and 
2, with 0.1mmss leading to a 10mm2 final print. Optical 
micrographs are shown for the 10mm2 prints using inks 1 and 2 
in figures 2 (c) and (d), respectively.  

Table 2: Table to show the jetting parameters used for inks 1-3. 

 
Printing with stabilised inks 

Initial printing trials for both inks 1 & 2 involved 
screening for ideal printing parameters, namely print speed and 
inter-droplet distance, or step size. A range of both parameters 
was explored through the printing of single tracks, with print 
speeds ranging from 6 to 12 millimetres per second (mmps) and 
ranging from 0.05 to 0.2 mm step size. Ink 1 displayed optimal 
track printing conditions of 6mmps and 0.1mmss, whereas ink 
2 displayed optimal track printing conditions of 8mmps and 
0.1mmss. Figures 2 (a) and (b) show the respective print tracks. 
A 100x100 pixel square array was also printed with inks 1 and 
2, with 0.1mmss leading to a 10mm2 final print. Optical 
micrographs are shown for the 10mm2 prints using inks 1 and 2 
in figures 2 (c) and (d), respectively.  

Straight tracks with an average width of 397μm are 
obtained when printing with ink 1 whereas ink 2 yields an 
irregular, crooked track with an average width of 1020μm, a 
257% width increase relative to ink 1. A comparison of the 
printed squares exaggerates this further with clearly defined 
printed lines present within the bulk of the square when ink 1 is 
used, yet an irregular wave-like appearance is observed for ink 
2.   

Print resolution was further investigated for ink 1, due to 
the superior print quality displayed by the tracks. This was 
achieved by decreasing the distance between parallel printed 
lines through manipulation of the image sent to the printer. 
Figure 3 shows the resulting prints for ink formulation 1. For 
image (a), which is the result of a 10 pixel line spacing, the 
average track width is 205μm with an average line spacing of 
938μm. Image (b) shows the result of a 3 pixel line spacing, 
with an average track width of 156μm and average line spacing 
of 233μm.   

 

 

 

Parameter Inks 1 & 2 Ink 3 

Rise Time 1 (µs) 20 17 

Dwell Time (µs) 20 17 

Fall Time (µs) 20 17 

Echo Time (µs) 40 34 

Rise Time 2 (µs) 20 17 

Idle Voltage (V) 0 0 

Dwell Voltage (V) 45 -28 

Echo Voltage (V) -45 -28 
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Figure 2. 25x Optical micrographs of tracks with inks 1 (a) and 2 (b). (c) and (d) show the corner of printed 1cm square with inks 1 and 2, respectively.   

 
Figure 3. 25x Optical micrographs of ink 1 with (a) 10 pixel line spacing 
and (b) 3 pixel line spacing. 

Annealing 
Phase analysis was performed on a single pass print of the 

100x100 pixel array for ink 1. Before annealing, ink 1 shows an 
amorphous XRD trace with no clear, discernable peaks. This 
remains true for temperatures up to 450°C. Further 
investigation is required to establish the temperature at which 
anatase phase TiO2 is observed for ink 1, as well as 
investigations into the annealing of inks 2 and 3.  

Cluster ink printing 
Ideal printing parameters were also investigated for ink 

formulation 3, yielding a print speed of 6mmps and a step size 
of 0.1mm. The track corresponding to these conditions is 
shown in figure 4, along with a micrograph of a 100x100 pixel 
square array which corresponds to a 10mm2 print. Straight 
tracks were obtained with ink 3, displaying an average track 

width of 226μm. Increased magnification yields the image in 
Figure 4 (b), showing the granular appearance of the printed 
track. Image (c) demonstrates the high print quality obtained 
through the use of ink 3. 

Figure 4. (a) and (b) shows optical micrographs of ink 3 tracks under 25x 

and 160x magnifications, respectively. (c) 25x micrograph of printed 1cm 

square using ink 3. 
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Comparison of inks 
Printing with ink 3 yields results comparable to ink 1, 

obtaining prints of a similar line width (Figures 3(a) and 4(a)). 
Both inks 1 and 3 yield straight printed lines. However printing 
with ink 2 results in track widths greater than inks 1 or 3, with 
irregular track boundaries. Print capabilities of inks 1 and 3 
were further investigated using a complex architecture, shown 
in Figure 5. These images capture the potential printability of 
both inks 1 and 3, yielding a patterned film of amorphous TiO2. 

However figure 5 also displays the scope for improvement 
of the ink formulations and print qualities. This is especially 
true for ink 3 in which the 3 printed passes did not overlay, 
resulting in the blurred final result. This may be due to a partial 
blockage in the printer head, and suggests that further 
optimisation by addition of stabilisers may be necessary.  

Conclusions 
Inkjet printing of both simple and complex titanium 

alkoxides was achieved. Identity of the glyme chosen for use as 
the stabilising ligand has been shown to have an effect on 
printed tracks for the simple alkoxides: DME stabilised ink 
yields a narrower, more linear printed track in comparison to 
diglyme stabilised ink. Titanium oxo-alkoxide cluster ink is 
shown to have comparable print qualities to the DME stabilised 
ink. However, in initial experiments, the oxo-alkoxide ink 
displayed lower reproducibility through displaced passes during 
the printing process.  

Further investigation into the annealing procedure is 
required for all ink formulations in order to identify and 
compare the minimum processing temperature for anatase 
phase formation.  

 

Methods 
All manipulations were carried out using standard Schlenk 

techniques in an inert N2 atmosphere unless otherwise stated. 
Stabilised inks were prepared by the slow addition of Ti(OiPr)4 
to a stirring solution of chosen stabiliser in iPrOH. Titanium 
oxo-alkoxo cluster inks were prepared by refluxing in hot 
toluene the crystals obtained by following the experimental 
preparation of Ti12O16(O

iPr)16 described by V.W.Day et al [11].  
Extraction of all ink solutions into an inkjet vial was performed 
on the day printing was to be performed in order to limit 
exposure to atmosphere.  

All inkjet printing was performed using a Microfab Jetlab 
x4 printing systems (Microdrop Technologies GmbH), fitted 
with an 80μm nozzle, under atmospheric conditions at 22ºC 
onto a clean glass substrate. A drop frequency of 500Hz was 
used exclusively.  
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Figure 5. 25x Optical micrographs of the letter ‘T’ using 3 passes of ink 1 (a) and 3 passes of ink 3 (b). Inserts show the macro images of the printed ‘TiO2’ 
patterns. 
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