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Abstract 
Optical models to predict visual appearance of 2D prints 

are relatively well-known. Two-flux models, such as the 
Kubelka-Munk (KM) theory, are the most commonly used and 
offer good prediction rates. However, most two-flux models 
assume that the ink layer and the printing support have the 
same optical indices neglecting their wavelength dependency. 
An improvement of such constraint would be to include detailed 
optical indices of the inks in current models. In this paper we 
compute optical indices of our inks by printing ink stacks of 
different thicknesses on a transparent support for reflectance 
and transmittance measurements. Since KM-based models work 
under limited conditions, we input our computed indices into a 
more robust model. By taking additional fluxes into account, 
one can address the limitations of the two-flux approaches. For 
instance, the four-flux model considers two collimated and two 
diffuse fluxes propagating upward and downward the layer 
stack offering better reflectance and transmittance predictions 
especially when translucent materials are involved. Our four-
flux theory including inks optical indices enables us to make 
spectral predictions of 2.5D prints without any preliminary 
measurements. The model is fairly accurate with primary 
colorants since the E94 values do not exceed 1 unit. 

Introduction 
The advent of 2.5D and 3D printing technologies has 

increased the need to control print properties such as color, 
glossiness, translucency, and texture [1-2]. In the case of UV 
curable inks and varnishes, one can print not only on paper, 
metal and glass but also on top of a cured layer of the same ink. 
This characteristic makes UV inks suitable for what we refer as 
2.5D printing, on which several inkjet layers of ink are piled up 
until a desired surface is achieved. The ability to control the 
printout roughness as well as the use of translucent materials 
creates exciting prospects for the printing of glossy and/or 
translucent textured surfaces. 

In the printing industry, color management is mainly based 
on ICC profiles. These sets of data are established via a 
mathematical treatment of colors measured with a tri-stimulus 
colorimeter or a spectrophotometer on a printed color chart. 
Yet, by considering the physical properties of a printed surface, 
the optical approach would be actually much more beneficial 
for a simple and accurate color management. It would require 
modeling the multiple reflections and scattering of light at the 
interfaces and inside the media composing the material. For 
stacks of planar layers, such as printed surfaces, one can solve 
the radiative transfer equation (RTE) [3]. Radiative transfer 
models are appropriate to predict optical properties of 
heterogeneous materials consisting of particles dispersed in a 
matrix. To that end, a layer of ink can be modeled as pigments 
inside a binder. The RTE takes into account the orientations of 
the incident and scattered fluxes. When only two hemispherical 
diffuse fluxes are considered, the RTE has analytical solutions 

directly linked with the reflectance and the transmittance 
factors, known as the Kubelka-Munk (KM) formulas [4-6].  

This two-flux model and its extensions are the most 
commonly used because of their simplicity [7]. They offer good 
prediction rates provided that strict conditions of the two-flux 
approach are satisfied (i.e. Lambertian illumination, optically 
thick films, highly scattering and weakly absorbing particles). 
However, the two-flux theory fails when the illumination is 
collimated or when dealing with translucent layers [8], like the 
ones produced with a 2.5D printer. Two-flux models also 
require macroscopic measurement of the reflectance and 
transmittance of one component for further predictions. Most of 
these problems can be solved with a moderately more complex 
four-flux model [9-11]. With two additional collimated fluxes, 
the four-flux model improves the spectral predictions when the 
illumination or a part of it is collimated.  

Moreover, KM-based models used for color prediction 
have assumed until now that the ink layer and the printing 
support had the same refractive index, generally 1.5, to 
compute the reflection at the ink-air interface. Not only these 
models omit the wavelength dependency of the refractive index 
but they also neglect the part of light that is attenuated by 
overlooking the imaginary part of the complex refractive index. 
An improvement on such constraints would be to include 
detailed optical indices of the inks. Unfortunately, the refractive 
index n and the absorption index k are usually unknown for the 
complete spectrum and obtaining them is not an easy task [12]. 
Computing inks optical indices is possible by printing ink 
stacks of different thicknesses on a transparent support for 
reflectance and transmittance measurements. These 
approximate indices have shown to ameliorate prediction of 
some underlying physical phenomena that affects the color 
rendering of prints such as the bronzing effect [13]. 

In this work we compute our ink optical indices to include 
them into a multilayer four-flux matrix radiative transfer model 
as proposed by [10]. We start by presenting the four-flux model 
without explicitly focusing on the resolution of the RTE. Then 
we briefly explain how the inks optical indices were computed 
and incorporated into our model along with the others 
parameters. The spectral properties of flat relief samples of 
primary colorants (CMYKWV) at different thicknesses are 
computed by this model that accounts for the different optical 
components (i.e. interfaces, ink layer and substrate). We 
assume that pigments inside the ink layer are spherical 
scatterers with a given size distribution and concentration. 
Lastly, our four-flux model simulations are compared to 
spectroscopic measures. By using the CIELAB E94 color 
distance metric, we can assess our model by quantifying the 
deviation between the measured and the predicted color spectra. 
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Radiative transfer four-flux model 
incorporating inks optical indices 

Four-flux model to solve the radiative transfer 
equation (RTE) in an ink layer 

One full tone sample of ink is modeled as a layer of 
thickness d containing a small concentration c of pigments 
(scatterers). We consider pigments as spherical scatterers. 
Lorenz-Mie theory tells us that when light hits a spherical 
particle, it interacts on the extinction cross section which 
represents the surface of light lost from the incident beam due 
to absorption and scattering. The extinction cross section Cext is 
therefore defined as the sum of the absorption and scattering 
cross sections Cabs and Csca which depend on the size and the 
optical indices of the scatterers. The scattering phase function 
gives the angular distribution of scattered light and depends 
strongly on the size of the scatterers. In the Rayleigh model, the 
scattering would be quasi-isotropic. But the bigger the particle, 
the more anisotropic and forwardly oriented the scattering is. 

 
Figure 1. Incoherent multiple scattering inside an ink layer under 

collimated illumination. 

Mie theory [14] allows one to compute how much light is 
absorbed and scattered by a single spherical particle. In the case 
of an ink layer (i.e. an absorbing and scattering medium), made 
of a batch of identical particles, multiple scattering prevails 
because the length travelled by light is higher than the particle’s 
extinction mean free path. In other words, incident light 
interacts with more than one particle before leaving the medium 
(see Figure 1). Furthermore, pigments are assumed to be 
randomly distributed which induces an incoherent scattering. 
Considering those scatterers as spherical particles and their 
concentration low in the medium, it is possible to establish the 
sum of the light beams inside the medium. This leads to the 
RTE [3]. As explained before, the four-flux approach as 
described by [9] is a simple solution to the RTE. 

The four-flux model treats multiple scattering inside a 
parallel planar structure of material with a possible substrate 
and takes into account the optical interfaces between the 
surrounding medium (air) and the slab (ink), therefore reducing 
the RTE to a one dimension problem (Figure 2). The incident 
radiation can be either diffuse, collimated or both. The modeled 
radiation inside the stack of layers is composed of two 
collimated beams, I and J and two semi-isotropic diffuse beams 
i and j. I and i are propagating to positive z while J and j are 
propagating to negative z. The differential equations defining 
the four-flux model are: 
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where K=ρCabs and S=ρCsca are respectively the absorption and 
the scattering coefficients (ρ is the number of particles per 
volume unit). ζc and ζd are the forward scattering ratios for the 
collimated and diffuse beams respectively that depend on the 
scattering phase function. (1- ζc) and (1- ζd) are the 
backscattering ratios. ε is the average path-length parameter 
introduced by [9]. When the diffuse light crosses a length dz, 
the average path length which is traveled over is actually εdz. ε 
is equal to 1 for a collimated radiation and to 2 for a 
Lambertian radiation. 

By integration of the system (1)-(4) with boundary 
conditions, the four-flux model computes reflectances Rcc, Rcd, 
Rdd and transmittances Tcc, Tcd, Tdd of the modeled ink slab (cc 
for collimated-collimated; cd for collimated-diffuse; dd for 
diffuse-diffuse). 

 
Figure 2. Geometry of the four-flux model. Illumination can be diffuse 

and/or collimated. This approach models a radiation constituted of two 

collimated beams I and J and two diffuse fluxes i and j inside a plane 

parallel slab. 

Refractive index and absorption coefficient 
computation 

A layer of ink can be seen as pigments of complex 
refractive index ñp=np+ikp randomly spread inside a medium of 
complex refractive index ñm=nm+ikm. The real parts np, nm are 
the refractive indices and the imaginary parts kp, km are related 
to the transmittance of the ink layer according to Beer’s law: 
ݐ ൌ ݁ିఈ	where h is the thickness of the ink layer and α is the 
absorption coefficient: α=4πk/λ. 

Ellipsometry, based on polarization analysis, is considered 
the main technique for optical indices measurements. 
Nonetheless, it requires a very flat, homogenous and non-
scattering sample. That is why this method would be inadequate 
for inks. Instead we use a method proposed by [13] based on a 
flux transfer model that relies on the multiple reflections and 
transmissions of light between the layers and interfaces. Such a 
method requires printing on a transparency film and computing 
the indices from reflectance and transmittance measurements. 

Samples of every primary colorant were printed at 
different thicknesses using Océ 3D High Resolution Printing 
Technology. This technology allows accurate control of a print 
thickness h. We use the formulas from [13] to compute the 
indices from the reflectance and transmittance measurements. 
Computations account for the effect of the substrate. Results 
show that indices are clearly wavelength-dependent and that 
inks are also very absorbing in a certain waveband (see Figure 
3). The results provide us an effective index for the ink. 
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However, our model requires two sets of indices, one for the 
medium and one the pigments. Thus, we use the computed 

indices as our pigment indices and the indices of a transparent 
ink, an ink without pigments, as our medium indices. 

 
Figure 3. Real part (left) and imaginary part (right) of the complex refractive index of inks used by Océ 3D High Resolution multi-channel printer as a 

function of wavelength.

Assessing the efficiency of the four-flux model 
to predict spectral properties of ink layers 

Modeling ink layers using optical parameters 
As explained before, this model considers a collimated 

illumination and is based on the Lorenz-Mie theory which takes 
into account the size of the pigments that compose a given ink. 
Pigment particles are grinded several times to ensure they are 
held in stable dispersion in the ink. The size distribution is 
typically D50: 100 to 150 nm and D95: 250 and 300nm. The 
model also considers the volume fraction of pigment in the ink 
(2 to 5%) and the layer thickness. 

In this work, we model layers of all colorants used by the 
printer: cyan (C), magenta (M), yellow (Y), black (K), white 
(W) and varnish (V) were printed independently in 
superposition from one to five layers (which correspond to a 
thickness of about 9 to 45 µm) without any substrate. All layers 
have 100% ink surface coverage. 

For each colorant, we set a pigment size distribution, a 
volume fraction of pigment and the previously computed 
optical indices of both the medium and the pigments. 
Therefore, for each colorant, we carry out five simulations 
where only the thickness of the simulated ink slab varies. 

Then, our model calculates the absorption (Cabs) and 
scattering (Csca) cross-sections (and so the absorption and 
scattering coefficients K and S) as well as the forward scattering 
ratios ζc and ζd for each wavelength from 0.38 to 0.78 µm. 
Ultimately, the matrices of the four-flux model lead us to Rcc, 
Rcd, Tcc and Tcd. Given that our simulations consider no diffuse 
component in the illumination, Rdd and Tdd are zero. 

Typical color prediction models require the measurement 
of the reflectance and transmittance of at least one component 
to predict the reflectance and transmittance of stacks of similar 
components. On the other hand, our model relies on the 
radiative transfer theory computed through the intrinsic 
characteristics of the inks, using as inputs their optical indices. 
However, we have presented here a set of spectral 
measurements that allowed us to characterize our inks and 

compute their optical indices, but that were no required by the 
model per se. This means that if the ink maker provides the ink 
indices, the model can be used directly with no need of further 
measurements. 

Simulations vs measurements 
Samples were printed on a slippery surface which enables 

us to remove the ink slab off the substrate. This facilitated 
reflectance and transmittance measurements without any 
substrate to compare the measured spectra with our model 
computations. Measures were made using a CARY 5000 
Agilent with an integrating sphere capable of measuring in both 
specular included and specular excluded modes. 

Figure 4 displays the results of the model computations 
and the spectro-photometer measures of all the inks (from top 
to bottom C, M, Y, K, W and V). The left column gathers the 
reflectance spectra and the right column the transmittance 
spectra. The solid black lines correspond to the measured 
spectra in specular included mode while the dashed red lines 
correspond to the predicted spectra. The predicted spectra are 
the sum of the collimated-collimated component and the 
collimated-diffuse component (i.e. displayed predicted 
reflectance is Rcc + Rcd and displayed predicted transmittance is 
Tcc + Tcd).  

For all inks, the transmittance depends heavily of the 
number of layers as it progressively decreases as the thickness 
increases. On the other hand, the reflectance is not as much 
thickness-dependent but it still increases with the thickness in 
the more scattering regions of each colorant (notice it more 
clearly in the yellow and the white cases). To assess the 
deviation between the predicted and measured spectra, we use 
the CIELAB E94 color distance metric. Colorimetric 
coordinates were calculated from predicted and measured 
reflectance and transmittance spectra using the CIE-XYZ 
convention with a D65 illuminant for the 2° standard observer 
then converted into CIELAB coordinates. 

A summary of the predictions can be found in Table 1.

0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

0.38 0.48 0.58 0.68 0.78

n

wavelength (µm)

0

0.1

0.2

0.3

0.4

0.38 0.48 0.58 0.68 0.78

k

wavelength (µm)

cyan

magenta

yellow

varnish

white

black

28 © 2016 Society for Imaging Science and Technology



 

 
Figure 4. Predicted (red dashed line) and measured (black solid line) reflectances (left column) and transmittances (right column) of full tone samples of C, 
M, Y, K, W and V for layers of different thicknesses (9 to 45 µm).  
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Table 1: Evaluation of the color prediction of fulltone colorants printed with different thicknesses using CIELAB E94. 

Cyan Magenta Yellow Black White Varnish Aggregate 
Reflectance mean E94 0.81 0.65 0.92 0.89 0.98 0.83 0.85 

Transmittance mean E94 0.95 0.91 0.39 0.31 0.79 0.46 0.64 
 
Predictions are fairly accurate standing below 1 CIELAB 

E94 unit. Transmittance predictions, which notably depend on 
absorption, are satisfying overall and prove that the calculated 
absorption coefficients are accurate. Reflectance predictions are 
also satisfying. Color differences are higher for yellow and 
white which are the two most scattering colorants. This 
indicates that our predictions are highly dependent of the 
refractive index. The computed indices prove to be precise 
enough for inks with small scattering regions but are less 
reliable for strongly scattering layers. The computation of one 
component’s refractive index over the whole spectrum is 
troublesome with spectroscopic measurements. Better 
measurements and calculation will enhance prediction 
performances. 

Conclusion 
Controlling the main four aspects describing the visual 

appearance of a print (color, gloss, translucency and texture) 
has become even more significant with recent advances in 3D 
printing technologies and the addition of an extra dimension. 
Color prediction models such as KM-based models have shown 
good accuracy but are limited in a number of ways. In this 
work, we characterized inks by calculating their refractive 
index real and imaginary parts. Using a radiative transfer four-
flux matrix model, we took these optical properties into account 
by modeling an ink layer as a heterogeneous material consisting 
of pigments dispersed in a medium. 

Our model computes both the transmittance and the 
reflectance of a print sample with non-zero height without any 
preliminary macroscopic measurement. Here we modeled 
layers of ink with no substrate and achieved good prediction 
accuracy. Yet, we can still improve these predictions. Our 
model depends heavily on the ink characteristics and optical 
indices. This was expected as we deduce the refractive index 
and absorption coefficient from spectroscopic measurements by 
using a flux transfer model. Accordingly, inaccuracies can be 
introduced since the computation of the inks complex refractive 
index is reliant to the measurement environment. Not only the 
use of exact optical indices but also the fine tuning of other 
model parameters (i.e. pigment size and pigment concentration) 
will improve predictions. The next step is to evaluate whether 
our model can compute the reflectance and transmittance of ink 
mixtures (such as red (magenta + yellow), green (cyan + 
yellow) and blue (cyan+ magenta)) where the primary colorants 
take equal and non-equal parts. On the long term, by 
characterizing the spectral properties of inks and substrates, this 
model could predict any color on any substrate under different 
illuminations without any preliminary macroscopic 
measurement. It could also address the inverse problem: 
compute the quantities of ink needed to achieve a targeted color 
under a given illumination and observation conditions. 
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