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Abstract 
The author is a co-author on a Wiley book under 

preparation entitled the “Handbook of Industrial Inkjet” (chief 
editor Werner Zapka). One area of relevant new content in this 
book is in surface manufacturing, which refers to the 
customization of a finished product – usually a manufactured 
good – by using printing and/or printing-like processes. 
Surface manufacturing is a form of additive manufacturing in 
which there is a template in the form of a partially finished 
object upon which to use as a surface for the (usually product-
finishing) custom manufacturing. There are four major types of 
inkjetting that can be considered for a role in surface 
manufacturing. After describing these, we then consider their 
use in surface manufacturing in light of the Steady State 
Macroscopic Mechanical Energy Balance (SSMMEB) 
Equation. Some approaches to designing for variability are 
then discussed. 

Introduction 
Mass customization is an approach to product 

manufacturing in which each object can be customized, which 
means that specific design options are provided to the mass 
production manufacturer and these are used as finished product 
options. The concept of “re-distributed manufacturing” is an 
enabler for mass customization of partly mass-produced goods. 
The ability to finish goods locally (mass customization) has 
significant cultural advantages (better understanding of the 
customer), reduced shipping costs, reduced inventory costs, and 
economic advantages due to the “recirculation” of money 
generated by the manufacturing sector. Will inkjet printers (e.g. 
print service providers and existing inkjet manufacturers) lead 
the way in custom and surface manufacturing? That remains to 
be seen, but one thing is certain: inkjet technologies will 
definitely play a role. Extrusion-based surface manufacturing of 
polymers is already a key part of additive manufacturing, and 
ceramics, metals and composite materials are moving in that 
direction. Inkjet technologies can be used to guide the flow of 
materials to a surface (intelligent extrusion), and thus perform a 
wide range of finishing steps for a custom (or even, in some 
cases, a mass-produced) manufactured good. We describe the 
four salient inkjet technologies next. 

Inkjet Technologies: TIJ 
The first inkjet technology considered her is thermal inkjet 

(TIJ). TIJ delivers ink (or other fluids capable of nucleation) 
through the rapid application of heat to a plate or resistor that 
leads to rapid bubble nucleation in the pressure chamber, 
followed by droplet ejection, bubble collapse and the (usually 
capillary-action driven) refill of the drop ejection chamber. 

The bubble nucleation is caused by rapid heating of a 
resistor, which heats a small (a thickness of approximately 0.1 
micron thick is heated to 340 C at about 200 million 
degrees/second—this is usually less than 2% of the volume of 

the chamber) portion of the ink in the chamber. A bubble of 
superheated ink vapor is produced within a few (usually 3-10) 
µsec of the pulse being sent to the resistor. The rapid expansion 
of the bubble forces out the rest of the ink from the chamber 
exit orifice, usually within 10-20 µsec. The drop is made 
cohesive by the surface tension of the ink and the structure of 
the orifice. Once the droplet is ejected, bubble collapse and 
capillary force refill typically occurs within 20-40 µsec of the 
thermal event, depending on chamber architecture. 

Momentum of the capillary force driven ink flux causes 
the ink meniscus to overshoot the orifice in the 40-50 µsec 
post-thermal event timeframe, with reasonable fluid equilibrium 
occurring at about 80 µsec. 

The important items to take forward from the TIJ 
description are (a) the entire event takes 20-80 µsec, 
corresponding to a firing rate of up to 50 kHz; (b) the vapor 
bubble acts like a piston forcing ink through the nozzle, so that 
the same event can be used to move fluids through small tubes 
or “pipes”; (c) nozzle densities of up to 500 nozzles/cm can be 
supported, meaning the chambers can be staggered every 20 
microns; and (d) a wide range of aqueous inks supporting dyes, 
pigments, latex and conductive elements can be moved by the 
thermal events. 

 

 

 
Figure 1. Thermal Inkjet examples, modified from [2] and kindly provided 
by Ron Askeland. 

Three different TIJ configurations are shown in Figure 1. 
An important difference between these configurations is the 
relative location and orientation of the resistor (heater) and the 
orifice. Since the nucleation event creates an evanescent 
bubble, it can be used to direct flow in any desired 
configuration (flow will simply proceed where resistance to 
flow is lesser). As a consequence, TIJ can be used in a wide 
variety of surface manufacturing configurations. The heating 
chamber can be equipped with a 1-way valve, in one 
implementation, which closes during the thermal event and thus 
forces the flow in a single direction. Using this, TIJ can be used 
for more than simply printing—it can be used for extrusion and 
bulk flow of a low-to-middle viscosity fluid. 
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Inkjet Technologies: PIJ 
The definition of “piezoelectric” is the generation of an 

electric charge in response to applied mechanical stress (or vice 
versa). In piezoelectric inkjetting (PIJ), an electrical pulse is 
applied to a piezoelectric element (usually made of PZT), 
which defects a diaphragm by approximately 1 micron. The 
structure of the PIJ chamber leads to a resonance effect, 
producing high fluid velocity at the nozzle location. Based on 
the nature of the electrical signal, several different droplet 
volumes can be delivered from the same chamber. Four 
different PIJ configurations are illustrated in Figure 2. 

 

 
Figure 2. Piezoelectric Inkjet examples, modified from [2] and kindly 
provided by Ron Askeland. 

Because of the mechanical event involved, PIJ chambers 
usually cannot be packaged at densities above 70 nozzles/cm. 
However, the PIJ chambers can support a very wide variety of 
aqueous, solvent, white pigmented, magnetic pigmented, and 
UV inks. This allows PIJ technologies to support a wide variety 
of substrate materials. More importantly for surface 
manufacturing, PIJ can be used to deliver highly viscous 
finishing materials like paints and lacquers. The relatively 
higher cost per nozzle and low nozzle density may limit PIJ’s 
use in high-resolution manufacturing. 

Inkjet Technologies: CIJ 
Continuous inkjetting (CIJ) is a printing technology in 

which an ink stream is broken into droplets of uniform size and 
spacing by applying a pressure wave pattern to an orifice. As 
the drops move from the orifice, they are charged electrically 
and then deflected. Depending on the charge, the droplets in the 
upper diagram of Figure 3 are electrostatically deflection onto a 
number of different raster positions (allowing text characters to 
be printed readily). Unused droplets—droplets which have not 
been charged in the upper diagram of Figure 3, or droplets 
which have been charged in the lower diagram of Figure 3—are 
(re-)collected using a gutter mechanism. This prevents ink 
waste and, because the droplet formation rate is constant, 
simplifies the engineering design. 

Because of the simple droplet formation mechanism, a 
wide range of viscosities, solvents and solids loads are 
accommodated. The droplet velocity is high, affording long 
throw distances of greater than 2 mm—the limiting factor being 
the air resistance effects. Because of the simplicity of design, 

the droplet frequency can be made very high. The continuous 
nature of the flow prevents short term decap. 

 

 
 

 
Figure 3. Continuous Inkjet (CIJ) examples, modified from [2] and kindly 
provided by Ron Askeland, 

While the drop generation system is relatively simple, the 
CIJ ink re-circulation system is relatively complex, and nozzle 
wear time is reduced by the continuous droplet formation. 
Overall, therefore, the printhead manufacturing cost is 
relatively high.  

Inkjet Technologies: MIJ 
The fourth primary inkjet technology is mechanical inkjet 

(MIJ). Figure 4 shows a typical incarnation. 
 

 
Figure 4. Mechanical Inkjet (MIJ). Diagram kindly provided by Ron 
Askeland, 

With MIJ, the drop ejection process is governed by a fast-
acting solenoid valve that is used to selectively control the flow 
of pressurized ink through the nozzle. 

The SSMMEB Equation 
The flow of materials through an inkjet channel (either 

manufactured through lithographic or 3D printing methods) and 
the associated energies is governed by the Steady-State 
Macroscopic Mechanical Energy Balance (SSMMEB) 
equation, which will be discussed in some detail here due to its 
importance in applying inkjet principles to surface 
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manufacturing. The general form of the equation [Bird et al., 
1960] has been known for some time, and is given by the 
following equation: 
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In this equation ν  is the velocity vector or profile, which 

means that for turbulent flow, 
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The scalar ρ  is the density, and the term φ∆  is the 
potential energy (which can be positive or negative depending 
on the relative positioning of the ink reservoir and the ink 
printing nozzle. 

 

Table 1. The SSMMEB Equation and Thermal Inkjet (TIJ) 

Printing Considerations 

Factor in the Steady-
State Macroscopic 
Mechanical Energy 
Balance equation 

Thermal Inkjet (TIJ) 
Considerations 

ν

ν 3

2
1

∆  

Velocity will generally be 
pulsatile due to the nature 
of TIJ nucleation and 
“explosion” 

φ∆  
Value depends on the 
relative position of the 
reservoir and nozzle 

dp
p

p
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2
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Pulsatile due to the 
nucleation and explosive 
nature of chamber 
evacuation 

Ŵ  
Most of the work for the 
pulsatile flow comes from 
the nucleation event 

νÊ  
Ink near nucleation event 
gives off heat 
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is, in isothermal systems, the Gibb’s free energy, or  Ĝ∆ , 
which is equal to the change in free enthalpy, or STH ˆˆ ∆−∆ . 
The term 

Ŵ  

is the mechanical work done by the fluid on its surroundings. In 
many industrial applications, this term may be appreciable; for 
example, if the fluid is used to push open a one-way gate in a 
pipeline. The 

νÊ  

term in Equation 1 is the frictional, or thermal, loss to the 
surroundings. This term can be further elaborated as shown in 
Equation 2:  

νν ν eE 2

2
1ˆ ∆=  (2) 

Here, the factor 

νe  

is a function of Reynolds number and thus changes as the 
relative laminar vs. turbulent behavior of the flow changes.  
 

Table 2. The SSMMEB Equation and Piezoelectric Inkjet 

(PIJ) Printing Considerations 

Factor in the Steady-
State Macroscopic 
Mechanical Energy 
Balance equation 

Piezoelectric Inkjet (PIJ) 
Considerations 

ν

ν 3

2
1

∆  

Velocity is pulsatile based 
on the mechanics of ink 
drop firing 

φ∆  
Value depends on the 
relative position of the 
reservoir and nozzle 

dp
p

p
∫

2

1

1
ρ

 
Pulsatile due to the use of 
mechanical stress (and thus 
pressure) to fire the nozzle 

Ŵ  
Most of the work for the 
pulsatile flow comes from 
the mechanical stress on the 
chamber 

νÊ  
The inks experience a largely 
isothermal history 
throughout their passage 

 
 
Factors in the Steady-State Macroscopic Mechanical 

Energy Balance equation and their relationship to four primary 
inkjetting technologies are provided in Tables 1-4. Note that 
different inkjet approaches will be ideal for different types of 
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extrusion applications. For example, thermal inkjet (TIJ, Table 
1) is a good technology to deploy when wishing to move fluids 
through tubes (pipes) since the heating elements can be 
associated with one-way valves and with different fluid 
resistances in multiple direction from the heating chamber (with 
the concomitant differential flow rates). Higher viscosity fluids 
will dampen the pulsatile nature of the TIJ events. 

 

Table 3. The SSMMEB Equation and Continuous Inkjet (CIJ) 

Printing Considerations 

Factor in the Steady-
State Macroscopic 
Mechanical Energy 
Balance equation 

Continuous Inkjet (CIJ) 
Considerations 

ν

ν 3

2
1

∆  

Velocity is pulsatile but 
usually with a characteristic 
intra-droplet frequency 

φ∆  
Value depends on the 
relative position of the 
reservoir and nozzle 

dp
p

p
∫

2

1

1
ρ

 
Steady, pulsatile pressure 
waveforms 

Ŵ  
Most of the work for the 
pulsatile flow comes from 
the ink dispensing 

νÊ  
The inks experience a largely 
isothermal history 
throughout their passage 

 
 
For PIJ printing (Table 2), the mechanical event can be 

coordinated with (or provide the mechanical energy for) valve 
opening, switching, movement of gears, and other mechanical 
events. If the PIJ chamber is capable of multiple mechanical 
resonances, different mechanical events can be triggered by the 
different settings. 

For CIJ printing (Table 3), the dot frequency and the 
variation in angle can be controlled independently to provide a 
range of ink density spanning several orders of magnitude; 
additional with active use of the gutter. As with PIJ, CIJ 
technologies do not result in thermal changes to the fluid, 
ensuring that heat-sensitive materials, including biological 
ones, are undamaged (no matter how slightly). 

The fourth major inkjetting technology, mechanical 
inkjetting (MIJ), is also conceptually the simplest. A single 
switch is used to control a solenoid valve, which at low 
frequency allows the MIJ device to function as an extruder. The 
MIJ technology can be used for underlayers, especially when 

the extruded material is of moderate or high viscosity and/or 
adhesiveness. If the valve is left open, MIJ acts like a macro 
form of CIJ for the appropriate materials. 

Given these considerations, we now look at the SSMMEB 
and the inkjetting technologies at a wider overall scale. 

 

Table 4. The SSMMEB Equation and Thermal Inkjet (TIJ) 

Printing Considerations 

Factor in the Steady-
State Macroscopic 
Mechanical Energy 
Balance equation 

Mechanical Inkjet (MIJ) 
Considerations 

ν

ν 3

2
1

∆  

Velocity can be maintained 
if the MIJ valve is kept open 

φ∆  
Value depends on the 
relative position of the 
reservoir and nozzle 

dp
p

p
∫

2

1

1
ρ

 
Pressure drop can be made 
constant on a per unit 
length basis if the MIJ valve 
is kept open 

Ŵ  
With the valve open, back 
pressure provides the work 

νÊ  
The inks experience a largely 
isothermal history 
throughout their passage 

 

Discussion 
The values for 

νe  

are known for a number of conditions, including entrance into a 
channel, expansion or contraction of a channel, passing through 
globe valves and various angled turns, allowing it to be readily 
calculated along with the other factors in Equation 1. These 
SSMMEB factors differ based on the type of inkjet technology 
used. Tables 1-4 summarize the five factors as they relate to 
four important inkjetting technologies: TIJ, PIJ, CIJ and 
mechanical inkjetting, or MIJ. 

The first factor is proportional to the square of the velocity 
of the jetted fluid. For a pulsatile jetting technology (TIJ, PIJ 
and CIJ), the velocity will exhibit two behaviors: a non-zero 
velocity when the droplet is ejected and a “zero velocity” 
behavior between drops. The pause between droplets can be 
adjusted to provide a closer approximation to isothermal 
behavior, or at least some cooling, as desired for the surface 
and the material being added to the surface. For MIJ, so long as 
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the valve is open, a steady-state velocity profile can be achieved 
and maintained. This can be used to control the temperature 
within an optimum range for a wide range of materials, 
depending on reaction thermals (endothermicity, exothermicity, 
peak temperature, etc.) concerns of the process. 

The potential energy factor depends on the relative 
location of the material (ink) reservoir and the nozzle(s). 
However, additional potential energy can be factored in at the 
manufacturing surface if the nozzles are positioned any 
appreciable distance above the surface. This type of potential 
energy will of course be directly converted into kinetic energy 
(and subsequently to heat) through the laws of conservation of 
energy.  

The third term, 

dp
p

p
∫

2

1

1
ρ

 

is directly affected by pressure differences in the system. TIJ 
systems in particular will have very pulsatile behavior for this 
value, since the pressure changes during droplet formation can 
be substantial. For PIJ printing, changes in pressure are innately 
part of the droplet formation. For MIJ printing, pressure 
changes during valve open/close are large. The severity of 
pressure changes can be mitigated through any of several 
easily-employed approaches, including one-way gates, turns in 
the material pipeline/pathway, or the introduction of 
obstructions at key locations along the pathway. The latter can 
affect the laminar vs. turbulent behavior of the flow. 

The work done on the system and the heat absorbed or 
released by the material can be controlled in a vast number of 
ways: for example, active or passive heating or cooling; 
obstructions such as grates, screens or partial barriers; or the 
use of energy scrubbers such as turbines. 

As illustrated here, the SSMMEB equation can be used to 
determine how best to control the extrusion velocity, 
temperature and inertia, allowing significant adaptability in 
how surface manufacturing is accomplished with inkjetting. 

Conclusions 
As the examples show, the repertoire of inkjetting 

technologies provide a wide array of options for surface 
manufacturing. In the case of TIJ, pulsatile temperature 
behavior can be used to trigger specific reactions and to 
differentially move fluids through tubes/pipes. Both TIJ and PIJ 
can provide pulsatile mechanical behavior suitable for actuating 
moving parts such as valves and flywheels. CIJ and MIJ 
technologies are capable of providing a wide range of coating 
thicknesses for materials with widely different viscosities, 
particulate profiles and volatilities. 

As 3D printing and other forms of additive manufacturing 
help empower more custom manufacturing than at any time 
since before the Industrial Revolution, inkjetting technologies 
are certain to be a part of it. Using the SSMMEB is one way of 
investigating the role each of the inkjetting technologies might 
play in this new custom manufacturing environment. 
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