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Abstract 
We report on two newly developed patterning methods for 

three-dimensional (3D) printed electronics applications, which 
are known as soft blanket gravure (SBG) and omnidirectional 
inkjet (OIJ) printing technologies. These technologies make it 
possible to print various inks directly onto non-flat or 3D 
object surfaces, and have a capability that could enable new 
electronic applications and markets. 

1. Introduction  
Electronic device manufacturing using printing methods 

has been attracting significant attention in research and 
development due to several advantages, including as low cost, 
environmentally friendliness, and the potential for flexibility 
and scalability to large areas. Unlike conventional thin film 
electronic device production that relies on the ability of 
photolithography to produce ultra-fine patterns, printed 
electronics promises to complement or replace this approach 
due to lower capital investment in printing equipment, lower 
running costs and higher throughput. Printing methods are 
generally low-temperature processes that allow for  electronic 
devices to be fabricated on a thin plastic film substrates, which 
enables low cost flexible electronics. The resulting electronic 
device applications  are expected to create next-generation 
business opportunities and markets. However, the advantage of 
printed electronics should be its potential to produce devices 
that could not have been produced with the photolithography 
[1-3].  

We recently succeeded in patterning silver nanoparticle 
inks onto curved or three-dimensional (3D) objects and 
surfaces by using two newly developed printing technologies, 
which we call soft blanket gravure (SBG) printing and 
omnidirectional inkjet (OIJ) printing technologies [4,5]. We 
believe that these new technologies can used in a wide range of 
industries, not only for thin film electronics manufacturing, but 
also in conventional printing applications. These new 
technologies make it possible to fabricate antennas, sensors and 
circuits on 3D objects or surfaces, towards creating a new field 
called 3D-printed electronics (3D-PE). For use in 3D-PE 
applications, we have also developed a silver (Ag) nanoparticle 
ink that was carefully optimised for these printing technologies.  

In this paper, we report on both of these unique printing 
technologies for potential use in 3D printed electronic 
applications, and demonstrate patterned silver (Ag) layers that  
are fabricated on curved or 3D surfaces.  

2. Soft Blanket Gravure Printing  

2.1. Fundamentals of Soft Blanket Printing 
Soft-Blanket Gravure (SBG) printing was developed for 

patterning on curved surfaces by employing conventional 
gravure offset printing. The blanket is extremely soft and thick, 
which allows it to deform and fit the curvature of the target 
surface. Figure 1 shows an illustration of the SBG printing 
processes. The grooves of a printing plate or “cliché” are first 

filled with ink then the soft blanket is rolled over the plate to 
transfer the ink in the grooves to the surface of the soft blanket 
(receiving process). The soft blanket is then pressed onto the 
substrate and rotated to transfer the ink to its curved surface 
(transfer process). In order to allow the blanket to deform into a 
curved surface the blanket was made of very soft, thick 
materials, which is primarily polydimethylsiloxane  (PDMS) 
with a thickness of more than 10 mm thickness with a rubber 
hardness of less than 5 (JIS A). Figure 2 shows a cylindrically-
shaped soft blanket (W:1000mm, D:510mm). The maximum 
printing area as defined by the printer stage was 120 x 150 mm.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Illustration of the SBG printing processes  

 
 
 
 
 
 
 
 
 

Figure 2. Cylindrical soft blanket with a thickness of 10 mm and a rubber 
hardness of 1 (JIS A). 
  

During the printing operation, the process of receiving the 
ink and transferring it to the surface of the target substrate or 
object surface is extremely important. Therefore, we varied the 
receiving process (ink to printing plate) pressure and the 
receiving speed to optimize the printing conditions. Because 
this system could not be controlled by pressure itself, the 
receiving pressure was controlled by the depth (pitch of 
0.01mm) at which the blanket is pressed against the printing 
plate  (Figure 3). Before the receiving operation, the surface of 
the blanket is positioned with the surface of the printing plate 
and the substrate surface is brought into contact, which called 
the “kiss-touch” position. The receiving speed was adjusted to 
between 0.01 and 100 mm/sec. The printing pressure in the 
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transfer process was also dictated by the blanket position 
against the substrate from the kiss-touch position.  

 
 

 
 
 
 
 

 
 
 
 
 
Figure 3. Control of receiving pressure against the printing plate by 
varying the depth from an initial position of soft blanket. 

 

2.2. High Viscosity Silver Nanoparticle Ink 
We recently developed inks with low viscosities of about 

10 mPa·s for inkjet printing using nanometer-sized silver 
particles (silver nanoparticles), which were synthesized through 
a silver complex. Unlike ink jet printing, gravure offset printing 
uses high-viscosity inks. Ink viscosity can generally be 
increased by blending a resin material additive into lower 
viscosity inks. However, we observed aggregation of the silver 
nanoparticles during the blending process. In order to solve this 
problem, we added the resin material at the beginning of the 
synthesis process, allowing to formulate high viscosity 
nanoparticle inks. Figure 4 shows the a typical high-viscosity 
silver nanoparticle ink, which contains silver particles with 
diameters of about 15 nm and has a concentration of 
approximately 80% by weight, and a viscosity of 1 Pa·s. We 
found that the viscosity is maintained over a broad shear speed 
region of 50–1000/sec, which is suitable for the gravure offset 
printing process.   

 
 
 
 
 
 
 
 
 
 
Figure 4.  High viscosity silver nanoparticle ink for gravure offset printing. 
 

Initially, we patterned the newly formulated silver 
nanoparticle ink onto a flat glass substrate using the SBG 
printing method, and obtained the silver lines ranging in width 
from 10 to 100 µm under same printing conditions, which is 
quite useful for printing complex patterns.  The printed silver 
lines after thermal sintering at 200 °C exhibited a smooth cross-
section with a thickness of 2 µm. 

2.3. Printing Fine Silver Interconnect Layers 
on Curved Surfaces 

We attempted to print the silver nanoparticle ink onto 
various curved surfaces by using the SBG printing method. 
Figure 5 shows the printed silver interconnects and pads. The 
finest line width was about 20 µm as shown in the figure. These 
results confirm that the newly developed SGB printing 
technology makes it possible to pattern inks regardless of 
changes in substrate curvature. We succeeded in printing the 
silver ink on these curved surfaces as if they were planar or flat  
surfaces.  

3. Omnidirectional Inkjet Printing  

3.1. Multifunctional Inkjet Unit 
Among the available printing methods, inkjet printing is the 

considered ideal because it is a digital on-demand process with  
and almost 100 % material utilization and no need for a 
printing plate. However, conventional inkjet printers can only 
jet inks in a downward direction, and not in lateral or upward 
directions. The omnidirectional inkjet (OIJ) printing technology 
is able to jet inks in multiple directions. By combining OIJ 
technology with a vertically articulated robot, inks could be 
printed on 3D object surfaces. Figure 6 shows the OIJ printer 
configuration, consisting of an inkjet nozzle, ink supply unit, 
and camera. The position of the inkjet nozzle unit can be 
adjusted by a precision XYZ stage.  

Because the inkjet head can move in all directions, it is 
important to continuously supply the ink in a stable manner 
regardless of the direction or height of the nozzle. We 
developed a new ink supply mechanism that uses a sealed ink 
tank filled with ink and an applied external pressure appropriate 
for ejecting the ink. The ink droplet jetting speed was increased 
to maintain the printing precision by employing an industrial 
inkjet head. An observation system for ink droplets was also 
mounted to the inkjet unit by employing a camera and strobe 
LED.  The ejected ink droplets are shown in the same figure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. OIJ printer and inkjet printing head showing the nozzle unit, 
supply unit and camera on XYZ stages. 

3.2. Interactive Control System 
The OIJ printing machine consists of a six-axes robot, 

precision linear motion XYZ stages, the inkjet printer head 
with the ink supply unit and a camera system. Each of the units 
coordinate with each other to print ink at precisely the right 
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positions on the substrate. We developed an interactive control 
system to operate these with a personal computer equipped 
with various I/O boards as shown in Figure 7. By associating 
the precision linear stage motion with the inkjet head motion, 
ink could be printed on the substrate at specific coordinates at a 
programmed movement speed and drop pitch. The inkjet 
printer and ink supply system were associated by counting the 
number of droplets ejected from the inkjet head and operating 
the ink supply actuator in response to this value. Moreover, the 
motion of the robot arm and precision linear motion stages 
(XYZ) were controlled so that once the printing action was 
completed, the robot automatically moved to the next 
programmed point. In this way, we developed an interactive 
control system for accurately printing inks over the entire area 
of 3D object or surface. 

 
 
 

 
 
 
 
 
 
 
 

 
Figure 7. Interactive control system consisting of a motor controller, IJ 
nozzle controller and robot I/O boards. 

3.3. Printing Silver Inks onto 3D Surfaces 
For this experiment, we diluted the silver nanoparticle ink 

formulated for SBG printing to match the viscosity required for 
inkjet printing, such that the optimized viscosity was about 10 
mPa·s. Using this new technology, we attempted to print the 
low-viscosity silver nanoparticle ink onto the curved surface of 
a wine glass. Figure 8 shows a printed silver antenna and a 
printed conductive metal line. The finest line that we could 
pattern was about 100 µm in width and about 100 nm in 
thickness. The silver ink could be also printed over high steps 
in the target surface. As a result, we succeeded in the printing 
the silver nanoparticle inks on 3D objects with curved surfaces. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 8. A printed silver antenna and conductive metal line patterned on 
wine glasses.  

Summary 
To expand printing technology to a wider variety of 

applications, we developed two new patterning methods based 
on gravure offset printing and inkjet printing, and successfully 
demonstrated the direct patterning of silver nanoparticle inks 
onto the surface of  curved or three-dimensional (3D) objects. 
These newly developed technologies can potentially be used to 
manufacture various thin film devices, such as sensors, 
integrated circuits and displays in 3D printed electronics 
applications, potentially creating new markets and business 
opportunities. 
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