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Abstract 

3D printer is expected to spread currently. This paper 
describes the processing method of modifying the FDM printed 
products. We get the characteristics of each of the processing by 
evaluation using the time and surface roughness. 

Introduction   
Currently, 3D printing process is used in various fields. For 

example, Stereo Lithography (SLA) [1-3] using a light-curable 
resin has been used for such as accessories. Inkjet type of the 3D 
printer has been used for production of medical such as the 
artificial bone joints organs and solar cells [4-7]. Selective Laser 
Sintering (SLS) [8-9] has been used in the production of metal 
parts with complex shapes. Fused Deposition Modeling (FDM) 
[10-12] has been used to produce the test model of industrial 
products and architectural models. In this way, 3D printing 
technology will be applied for fabrication of complex and 
functional devices and/ or products in the industrial field and the 
medical field and academic field. In addition, the patent of FDM 
core technologies was already expired in 2007. Therefore, it 
becomes possible to produce a reasonable FDM 3D printer. 
Further FDM is able to modeling of resin material which is 
widely used.  

However, it is difficult to recognize the 3D printer as an 
explosively widespread fabrication machine. The main reason is 
the layer grooves that were generated on the 3D printed objects. 
The grooves exacerbate and damaging the aesthetics of the 3D 
printed objects. The grooves are generated on 3D printed objects 
of any shape. The FDM principle is shown in Fig.1.This 
principle is the material dissolved in thermal is printed each 
layer. By repeating the curing, laminating, 3D object is 
fabricated. The layer grooves that were generated on 3D printed 
object are shown in Fig.2. It can be confirmed that the grooves 
were generated for each layer of the 3D printed object. The layer 
grooves are to the accuracy of the 3D printed objects in much 
lower quality than the user expectations.  

The hybrid process of polishing [13-14] and painting was 
used for the method of removing the layer grooves. However, it 
was not suitable for finishing process of the 3D printer because 
the process had following problems. The first problem was 
losing the advantage of 3D printing that was possible to fabricate 
conveniently complicated shaped objects. The second problem 
was the nature of the polishing, problem of difficulty in 
processing for complex shaping objects. Finally the third 
problem was decreasing of convenience because the harmful 
dust was generated in the polishing process and the dust was 
removed with collecting device that was additionally installed.  

There was the other finishing process that was reported 
instead of polishing and painting. The vaporized chemical 
solvent was used in this process [15]. Acetone dissolves the ABS 
[16] resin that is the major 3D printing material. When the 3D 
printed object was placed in vaporized acetone, the surface of 
the object was dissolved and the layer grooves on the surface 
were removed. However, there were several problems in this 
process. It was not suitable for local processing because this 
process utilized vaporized acetone. Vaporized acetone was 
dangerous because it is flammable gas.  

 
 
In this study, we investigated the detail of the upper two 

processes. We evaluated the processing time and surface 
roughness. And we consider about the two processes based on 
the evaluation. For example the scenes in which each process is 
suitable. 
 

 
 
Fig.1 The Pattern Diagram of FDM 3D printer. 
 
 

 
                         (a)                                                (b) 
Fig.2 The sample of FDM products which has layer grooves 
((a): Over all view of the FDM 3D printed products which has 
layer grooves, (b): Enlarged view of (a)) 

The Polishing process for the 3D printed 
products  

This chapter confirms the change of the layer grooves 
processed utilizing the polishing process. The diagram of the 
experimental set-up that we developed is shown in Fig.3. 
Samples are printed utilizing ABS resin as a material. The STL 
data of the sample whose shape is 5*15*25 are modeled utilizing 
3D-CAD (Dassault Systems, France, Solidworks 2011). Samples 
are printed utilizing the FDM 3D printer (abee, Tokyo, 
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SCOOVO X9). The head speed of the 3D printer is set to 30 
[mm / s]. The polishing process utilizes the pen type mechanism 
with #800 paper rasp. The surface displacement is measured 
utilizing laser displacement sensor (KEYENCE, Osaka, LK-
H008). The processing, the measuring and the shooting are 
carried out in the same system. Therefore the deviation of the 
measurement is minimized.  

The surface displacement results before and after the 
polishing process is shown in Fig.4. It aims to grasp the 
fundamental characteristics of the polishing process from the 
micro point of view. The solid line is the surface displacement 
before the polishing process in Fig.4. It can be observed the 
width of the layer grooves is dependent on the layer pitch from 
the distance between the valley and the valley in Fig.4. The 
dashed line is the surface displacement of the after the polishing 
process in Fig.4. It is found that the height of the layer grooves 
was furnished by the polishing process. There are layer grooves 
that are scraped small and layer grooves that are scraped large 
when viewed individually by layer groove. In the polishing 
process there are irregularities in the removal of the layer 
grooves. The surface of the product is flat in the data and the 
polishing process utilizing the flat surface data. But there are the 
dents and scratch from the point that is not visible by human 
eye. Therefore the processing irregularities are generated. The 
decreasing of the products strength that is caused by layer 
grooves cannot be recovered by the polishing process. In 
addition the polishing process generates dust that is bad for 
human body. Therefore it is necessary to recover the dust. But 
the collecting mechanism for the dust deprives the FDM 3D 
printer of its convenience.  
 
 

 
 
Fig.3 The experimental set-up for the polishing process and the 
measurement of the surface displacement 
(1: The sample printed utilizing FDM 3D printer, 2: The 
polishing process that is utilizing pen type mechanism, 3: Laser 
displacement sensor) 

The FDM 3D printed samples that simulated the left hand 
with a free form surface are shown in Fig.5. The layer grooves 
deteriorate the appearance of the FDM 3D printed products. (a) 
is the sample immediately after FDM 3D printing. (b) is the 
sample printed utilizing FDM 3D printer and processed utilizing 
the polishing process). There are some layer grooves sparsely. 
They can be the selectively processed utilizing the pen-type 
mechanism. One of the characteristics of the polishing process is 
to process easily to the convex portion of the structure and to 
process difficultly to the recessed portion. Laser grooves exist 
sparsely in Fig.5 are generated by this characteristics.  

The polishing process is able to selectively process 3D 
printed products by devising mechanisms. However, depending 

on the shape of the FDM 3D printed product is there is a 
problem that the completely removal is not possible of the layer 
grooves. There is also a problem in the generation of dust. 
Furthermore, it needs long time for processing the complex 
product. 

 
 

 
Fig.4 Changes in the surface displacement of the sample printed 
utilizing FDM 3D printer and processed utilizing the polishing 
process 
 
 

 
                        (a)                                                   (b)      
Fig.5 FDM 3D printed samples simulating the left hand with a 
free-form surface 
((a): The sample immediately after FDM 3D printing, (b): The 
sample printed utilizing FDM 3D printer and processed utilizing 
the polishing process) 

The acetone vapor process for the 3D 
printed products  

This chapter confirms the change of the layer grooves 
processed utilizing the acetone vapor process. The diagram of 
the experimental set-up that we developed is shown in Fig.6.The 
acetone vapor process uses the same shaped samples with the 
polishing process. The same surface displacement measurement 
mechanism is utilized with the polishing process. The acetone 
vapor process is the method of coating the entire surface of the 
products with vaporized acetone. Controlling the temperature 
utilizes the Peltier element to vaporize the acetone. The boiling 
point of acetone is 56℃. Therefore acetone in the beaker is 
heated to 110 ℃ with a Peltier element and acetone is vapored in 
the beaker. The acetone vapor process was carried out for 5 
minutes. 
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It aims to grasp the fundamental characteristics of the acetone 
vapor process in micro point of view.  

The surface displacement results before and after processed 
the acetone vapor process is shown in Fig.7. The solid line is the 
surface displacement before the acetone vapor process in Fig.7. 
The dashed line is the surface displacement of the after the 
acetone vapor process in Fig.7. The dissolved material utilizing 
the acetone vapor process is filled into the recess of the layer 
grooves by surface tension. The acetone vapor process smooth 
layer grooves uniformly regardless of the shaped products. The 
vapored acetone is able to enter the portion where it is 
impossible to the polishing processing are recessed. This 
uniform process improves the strength of the FDM 3D printed 
product. Because of the acetone vapor process decreases the 
fracture cause.  

The FDM 3D printed samples simulating dog with the 
complex structure are shown in Fig.8. (a) is the sample 
immediately after FDM 3D printing. (b) is the sample printed 
utilizing FDM 3D printer and processed utilizing the acetone 
vapor process. 
 
 
 

 
 
Fig.6 The experimental set-up for the acetone vapor process  
(1: Peltier device that control the temperature of acetone, 2: 
Acetone in the liquid state, 3: The sample printed utilizing FDM 
3D printer, 4: Acetone in a gaseous state) 
 

The acetone vapor process smooths layer grooves and 
makes it hidden. However, the line to represent the eye of the 
dog has disappeared by the acetone vapor process. Because 
vaporized acetone processes all portion of the products in the 
acetone vapor process. Therefore the acetone vapor process is 
not able to selectively process.  

The acetone vapor process is able to uniformly smooth the 
layer grooves. The vaporized acetone covers and processes all of 
site of the products in the acetone vapor process. Therefore time 
required is at a critically low. However, the acetone vapor 
process is impossible to selectively process. The acetone vapor 
process is not suitable for the process to the product that has 
representation of fine line. In addition there is also a problem 
that leaking dangerous vaporized acetone. 
 
 
 

 
Fig.7 Change of the surface displacement of the sample printed 
utilizing FDM 3D printer and processed utilizing the acetone 
vapor process 
 
 

 
                        (a)                                                    (b) 
 
Fig.8 FDM 3D printed samples simulating dog with the complex 
structure ((a): The sample immediately after FDM 3D printing, 
(b): The sample printed utilizing FDM 3D printer and processed 
utilizing the acetone vapor process) 

The Comparison of the polishing and the 
acetone vapor 

This chapter compares the polishing process and the 
acetone vapor process. It was compared with the polishing 
process and the acetone vapor process in the four items (time, 
safety, surface precision, selective) in table.1. When intend the 
uniformly process to the products the acetone vapor process is 
suitable. The acetone vapor process requires less time than the 
polishing process and surface precision is more accuracy. 
However the acetone vapor process is more dangerous than the 
polishing process. Because the acetone gas is easily ignite. In 
addition the acetone vapor process is not able to selectively 
process. Therefore when there is a portion that should not be 
processed the polishing process is suitable. The acetone vapor 
process is suitable when the improving of the strength for the 
FDM 3D printed products. Because the acetone vapor process is 
able to smooth and filled layer grooves. The new type process 
for the FDM 3D printed products is resolving the respective bad 
combines the good points of the respective the polishing process 
and the acetone vapor process are desired. 
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Table.1 The comparison of the polishing and the acetone vapor  
  Polishing Acetone vapor

Time  ×  ○

Safety    ×

Precision  ×  ○

Selective  ○  ×

Other  Dust  Flammable gas 

Conclusion 
The behavior of the polishing process and acetone vapor 

process when applied on FDM 3D printed products was 
investigated. Each characteristic of the polishing process and the 
acetone vapor process were grasped by experiments. The new 
type process for FDM 3D printed products that is required by the 
users was revealed from the properties that were measured. In 
the new type process for the FDM 3D printed products, the 
ability to apply selectively and smoothing uniformly at the same 
time in a short time with safety is required. 
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