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Material Jetting 3D Printing Process by Thermal Ink Jet Head
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Abstract

A new type of 3D printing process is introduced. The printing
mechanism is based on material jetting process by inkjet-
printing head to eject and deposit a photopolymer ink as the 3D
object building material. The existing material jetting 3D printer
adopted multi nozzle piezo-electrical print head. The piezo ink
jet head requires complicated head structure, ink supply and
maintenance system. The printing area should be large because
of wide area of printing head and it causes that the 3D printing
machine should be large and expensive for a commercial
purpose only. In this study, Thermal ink jet head is applied to the
print head for 3D printing process. The thermal head has low
cost and compact printing mechanism but it is hard to apply
photo polymer ink of material jetting process for jetting fluid
because the thermal ink jet head fires the ink droplet by boiling
mechanism. The specific building material for jetting in thermal
head is applied and a 3D printing process is investigated for
stable ejection and deposition on the substrate for building 3D
object. The droplet volume of print head is under 20 pico-litters
and ejection frequency is 2 kHz and the thickness of single layer
deposited for building object is more than 10 micro-meters. The
3D printing system is fabricated and the hollow cylindrical
object with high aspect ratio is successfully built and printing
process is verified.

Introduction

Material jetting process is based on inkjet printing by firing
droplets of liquid photopolymer to build 3D Object. The
photopolymer consists of oligomer, monomer and photo-initiator
is ejected from print head and spread on the substrate and
solidified by UV light. The photo-initiator is radicalized by UV
ray and polymerizes oligomer and monomer. The monomer
decreases the viscosity of photo-polymer and makes it possible
to eject the droplet from print head. A piezo ink jet print head
was used for jetting photopolymer because of high viscosity of
liquid polymer. The piezo ink jet head is able to eject the ink
droplet from the head by deformation of membrane in the print
head and pushing the liquid into the nozzle.

In case of thermal ink jet print head, aqueous ink is heated
and vaporized on the heater and bubble is grown and pushes ink
through the nozzle into the paper. However it is impossible to
boil the liquid polymer because of high boiling temperature of
monomer. Also it is easy to deposit the solidified polymer on the
heater and prevent the heat transfer from the heater to liquid.

Trueba and Buskirk [1] proposed a curable ink fluid
composition for a thermal fluid ejection device where in the
printing fluid comprises a curable liquid-phase monomer, a
volatile driver fluid capable of being vaporized by a thermal
fluid ejection print head. The driver fluid which has low boiling
point enable the thermal ink jet head to eject the photopolymer.
The ink formulation is considered for preventing material
deposition on the heater during ink droplet firing. The material
jetting 3D printing process is based on this type of ink and a
layer by layer deposition process is suggested for building 3D
object in this study.

Ink Droplet Ejection Performance

A commercialized HP45 ink jet print head is adopted for
3D printing head because it has spring bag type ink cartridge so
as to replace aqueous ink with liquid photopolymer easily. A

droplet volume of liquid photopolymer is 20 pl (Pico Litter) and
droplet velocity is 5 m/s. The volume and velocity of ejected
droplet are smaller than the ones of aqueous ink; 25 pl and
14m/s because the maximum bubble size is smaller than the
aqueous ink due to the low heat capacity of photo polymer. The
small bubble generates small drop volume and causes to the low
drop velocity. Figure 1 show that drop ejection behaviors of
aqueous ink and polymer ink are different from each other. The
satellite and tail of photopolymer ink drop is smaller than the
one of aqueous ink due to the low drop velocity. While Ink is
boiling for jetting, high surface temperature can leads to a
residue on heater and bubble generation is prevented from low
heat conduction to ink. The adopted photopolymer ink has
maintained initial drop volume of 20 pl throughout drop ejection
test as shown in Figure 2. The residue is not observed on the
heater after the photopolymer ink jetting test.
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Figure 1 Droplet Ejection UV Curable and Aqueous Liquid
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Figure 2 Drop Ejection performance of the Ink jet print Head

Analysis of Droplet Spreading On the

Substrate

The droplet of liquid polymer ejected from print head can
be analyzed by energy conservation. Kim and Chun[2] have
proposed mathematical model for the recoiling of liquid droplet
upon collision with solid surfaces as bellow.

JFer = sv + swpdt' = 0 )
1

where T* is kinetic energy and V* is potential energy; sum
of surface energy and gravitational energy and W¢* is frictional
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work. The droplet behavior on the substrate was calculated and
described as the height of droplet. It is important for the droplet
to deposit on the substrate as semi-spherical shape not to splash
and scatter. Mundo et al [3] suggested experimental formula
whether deposition or splashing.

— . 1.25 _ ¢
K = Oh-Re ,Oh—\/m ?)

where Oh and Re are the Ohnesorge number and the Reynolds
number, respectively. A value of K exceeding 57.7 leads to
incipient splashing, whereas K less than 57.7 leads to complete
deposition of the liquid.

The viscosity of aqueous ink is between 2 cP(Centipoise)
and 3 cP, droplet velocity is more than 14 m/s. The case I of
calculation table shows that decision parameter of K value is
61.5 more than 57.7 and droplet can splash and scatter on the
substrate. In case of the photopolymer ink of the thermal ink jet
head, the drop velocity is decreased because low heat capacity of
the photopolymer causes to minimize bubble size on the heater.
Case 111 is based on the experimental result of photopolymer ink
test: the droplet volume is 20 pl (Picoliters) and droplet velocity
is 5 m/s. The viscosity of adopted ink in the study is about 3.5 cP
and lower than conventional photopolymer ink of piezo ink jet
head. The calculated Ohnesorge number is 0.11 and Reynolds
number is 48.1. The calculated K value is 14.0 and smaller than
57.7 means to stable deposition. High viscosity increased drag
force on the substrate and low drop velocity of ink decreased
inertial force of droplet. These effects result in the stable
deposition on the substrate and photopolymer ink is more
favorable than aqueous ink in the thermal ink jet head. In case of
low viscosity same as aqueous ink and a little higher drop
velocity than photopolymer ink, stable deposition condition is
accomplished as shown in Case II. Conventional piezo ink jet
head has stable deposition condition because of high viscosity
and low drop velocity as shown in Case IV, V.

The Result of Calculation for Drop Spreading on the
Substrate

Head Type Thermal Piezo
Case No. 1 [} n v \'
Viscosity
(centipoise) 2 2 3.5 15 15
Drop Volume 25 20 20 30 80
(picolitters)
Drop Velocity 14 10 5 8 8
(m/s)
Surface Tension
(dynelcm) 28 28 28 30 30
K Value 61.5 38.2 13.9 19.3 24.7

In order to verify the calculation, numerical analysis was
performed by ANSYS-CFX. Park [4] has analyzed ink drop

spreading behavior ejected by piezoelectric head on the substrate.

The liquid droplet ejected from thermal ink jet head spreads on
the substrate at various contact angles as shown in Figure 3. The
drop volume is 20 pl, the drop velocity is 10m/s and the
viscosity is 3.5 cP. The droplet is spread and forms a thin layer
on the hydrophilic surface with 20° of low contact angle and the
layer thickness enough to build 3D Object cannot be achieved.
In case of high contact angle more than 90 °, the droplet forms
sphere shape on the hydrophobic surface and easily slips on the
substrate and hard to form a layer. The optimum contact angle is
near 70°. Due to the low viscosity of photopolymer ink in the
thermal head, ink drop is evacuated at the center of spreading
droplet after 10 ps and the excluded ink is merged again and
forms a deformed semi spherical shape.
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Figure 4 Spreading Behavior of consecutive Dual Droplets

A behavior of consecutive dual Ink drop spreading is
analyzed at the various contact angles as shown in Figure 4. The
second drop is placed at the distance of 42 um (600dpi) near the
first drop. The first and the second drops are not merged in case
the contact angel is more than 110°. As the theoretical model
predicted, splashing of ink drop on the substrate is not observed
in the simulation result.

Temperature Control of Ink Jet Head and

Printing Performance

Temperature control of thermal ink jet head is a key
parameter for obtaining stable ejection performance. The
viscosity of aqueous ink is sensitive to the temperature of head
and the variation of viscosity causes to the variation of ink drop
volume. Because the heat capacity of photopolymer applied for
thermal ink jet head is lower than the aqueous Ink, the
temperature of head is more sensitive to the head ejection
condition. In case of Ink drop visualization test, tens of nozzles
are fired and measured ejection frequency is up to 5 kHz.
Ejection frequency of head is decreased in full nozzle firing for
printing. Figure 5 shows the result of measured temperature of
ink jet head during full coverage printing on A4 paper. The



printing swath of head is 1/2 inch and 20 paths were printed. The
printing resolution is 600 dpi (2 kHz) and 1200 dpi (4 kHz). The
result shows that temperature of ink jet head rises up to 70C at
2kHz, 85°C at 4kHz and even higher than the aqueous ink in
same condition. The low heat capacity of polymer ink causes to
fast ink heating and low cooling of head. It leads to the higher
temperature of head at the same driving condition than aqueous
ink. Temperature range of head should be maintained under the
65C for common 2D ink jet document printer because of stable
firing condition and prevention aeration. Consequently, the
firing frequency of head for photo polymer ink is limited under 2
kHz in case of full nozzle firing.
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Figure 5 Temperature of Ink Jet Head during Full Coverage Pattern Printing

In this study, the target configuration of 3D object is
determined a hallow wall cylinder because of verification for
high aspect ratio object building capability by proposed thermal
ink jet 3D printing. In order to build 3D object, printing path
should be designed. Printing frequency is 2 kHz due to the result
of full nozzle printing test. Figure 6 shows the designed printing
paths. In order to minimize the difference between the printed
swaths, Ink jet carriage is fed vertically by 1/3 of swath and
printing swaths are overlapped. The 16 paths is printed for single
cross section, three layers are deposited during single printing
process. The outer diameter of cylindrical cross section is 21.2
mm and wall thickness is 3.39mm. The bidirectional printing is
applied to increase the speed and the uniformity of drop volume
during the printing.
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Figure 6 Printing Paths for Hallow Wall Cylindrical Cross Section

Figure 7 shows the temperature profile during the proposed
printing process. The upper graph represents the temperature
distribution for the first layer printing. The Ink Jet head is heated

from ambient temperature to 50°C during the first layer printing.
The carriage moving speed is 3.3 inch per second. The rising
and falling of temperature depends on the printing image.
However, peak temperature is saturated to 50°C during the first
layer printing. The lower graph is temperature distribution for
the second layer printing. The temperature rises little higher than
the first layer but saturates to 54 C. The temperature range is
from 46C to 54°C and smaller than the first page. The designed
printing path for target object cross section is verified for stable
temperature control.
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Figure 7 Ink Jet Head Temperature Profile during Printing Process

Printing System Fabrication and 3D Object
Building

In order to verify the 3D printing process of material jetting
by thermal ink jet print head, a 3D printing machine has been
fabricated as shown in Figure 8. A precision 3-axis stage is
assembled for building 3D object. For UV curing process, 395
nm LED type UV light source is adopted. The power and the
size of curing apparatus is smaller than the lamp type UV light
source applied to the conventional piezo head material jetting
3D Printer. A carriage including 2 print head and LED UV light
source was attached to 3 axis stage. The first head is prepared
for building material and the second head is for support material.
The ink jet printing process for support material is not included
in this study.

The UV ray reflects on the printed material and substrate
and then illuminates the nozzles of the head because UV light
source is located near the ink cartridge as shown in Figure 8.
The reflected UV lay cure the ink in the nozzles and block the
nozzle opening. The UV reflection blocking structure is applied
to the carriage between the cartridge and the UV light source.

The capping and wiping mechanisms are installed for
nozzle recovery during the printing process. The optimum
maintenance algorithm will be determined in future study.

The single layer thickness of printed material is 14um and
resolution of printed image is 600 x 600 dpi. If the cross section
of 3D Object is square with 100mm x 100 mm, single layer
could be printed with 8 swaths and a printing time is 23.4
seconds. The building speed for the cube structure is about 2
mm/hour in case maintenance time is supposed to 100 seconds
for an hour.
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The designed printing path is applied and repeated layer by
layer for building a hollow cylindrical object. Figure 8 shows a
printed target object by the fabricated 3D printing system and
height of the object is more than 30mm. A thin walled
cylindrical object with high aspect ratio is obtained by the
proposed thermal ink jet head.

Figure 8 Printing System & Build Object

Conclusion

Material jetting based 3D printing process by using thermal
ink jet print head is introduced and proved to be 3D printing
system and capable of building 3D object. The proposed 3D
printing process is accomplished by specific photopolymer
composite ink and design of printing process considering
physical behavior of liquid photo polymer in print head and on
printing the substrate.

The drop volume and drop velocity is smaller than the
aqueous ink and the temperature of head during printing is
heated higher due to the low heat capacity of photopolymer ink.
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The vertical building speed of 3D printing is more than 2 mm/hr.
The proposed printing process can be applied for personal 3D
printer because of low cost thermal print head and LED UV
source.
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