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Abstract 

Summarization techniques can be applied to non-text data in 
order to perform classification and clustering of important imaging, 
video and other document-associated but non-text content. The 
advantage to this approach is that there is a multiplicity of 
inexpensive (even free) summarization engines, and so a robust 
solution can be crafted with relatively modest effort. In this paper, 
we present the applicability of this approach to video and imaging 
data, in addition to broader binary and genetic data. 
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Introduction 
Summarization can be extractive or abstractive [1]: extractive 

techniques simply replicate the original text that is determined to be 
the most germane as a “shorthand” for the document, while 
abstraction techniques paraphrase sections of the original content, 
therein condensing information and providing semantic or meaning-
based “shorthand”. 

Extractive summarization sentence weighting approaches 
reported in the literature are based on the keywords and key phrases 
extracted; capitalization of text; grammatical case of nouns; word 
co-occurrences; font formats; sentence position in a paragraph; cue 
phrases such as “in summary” and “importantly”; correlation of a 
sentence or phrase with the title, author reported keywords, etc.; 
sentence length; and sentence centrality or redundancy with other 
sentences [1]. 

Summarization is not just useful for the aforementioned 
shorthand representations. Summarization can also be used for 
functional purposes in text processing—this includes indexing and 
tagging, search, classification, and document sequencing for topical 
understanding. We have shown how multiple summarization 
engines are used not only to improve summarization accuracy 
(primary summarization) but also to select text from a document that 
is optimal for use in a secondary text processing task (functional 
summarization)[1]. 

A summarization engine is a computer-based application that 
receives a text document and provides a summary of the text 
document. A meta-algorithmic pattern is a computer-based 
application that can be applied to combine two or more 
summarizers, analysis algorithms, systems, and/or engines to yield 
meta-summaries. 

Non-textual content may also be summarized. For example, 
images, audio and/or video content, binary data, genetic data, and/or 
healthcare data can be summarized using traditional summarization 
approaches. Video content may include one video, portions of a 
video, a plurality of videos, and so forth. Likewise, genetic data may 
include genetic data from an individual, a group of individuals, 
portions of genetic data, genetic data of one or several organisms, 
and so forth. Binary data includes any data that may be represented 
by a sequence of 0’s and 1’s. 

Meta-summaries are summarizations created by the intelligent 
combination of two or more standard or primary summaries. The 

intelligent combination of multiple intelligent algorithms, systems, 
or engines is termed “meta-algorithmics”, and first-order, second-
order, and third-order patterns for meta-algorithmics may be 
defined. 

The output of a meta-algorithmic pattern may be used as input 
(in the same way as the output of individual summarization engines) 
for classification of the non-textual content into a plurality of 
classes. Each class may include non-textual content, including 
images, audio, video, binary data, genetic data, healthcare data, and 
so forth. Summarization terms may be extracted from the meta-
summary, where the summarization terms include key tokens that 
are representative of the meta-summary. Class terms representative 
of a given class of non-textual content may be generated from the 
non-textual content in each class. The summarization terms may be 
compared to the class terms for each class to determine similarity 
values of the non-textual content over each class. A class of the 
plurality of classes may be selected based on the similarity values, 
and the non-textual content may be associated with the selected 
class. 

Combined, these technologies create an accurate system for 
data mining, classification and processing of non-text data, the high-
level architecture for which is given in Figure 1. 

 

 
Figure 1. General diagram of the system. Content is filtered as 
necessary to create the “Filtered Content” from which the 
“Summaries” and “Meta-Summaries” are derived. The outputs of this 
collective “Summarization Set” are evaluated for their utility in the 
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functional task, and the optimal “Summarization Architecture” will be 
chosen for the Deployment. 

Video Data 
Summarization techniques are often based on identifying the 

relatively rare terms in a document. Traditional methods multiply 
the term frequency (TF) in a given document by the inverse of its 
overall document frequency (IDF). This measurement, TF*IDF, or 
other variants on this approach, can just as readily be applied to any 
data sets. 

As such, summarization techniques are useful for the 
compressed representation of other content, such as image libraries 
and video (herein termed “image data”). Summarization of image 
data proceeds after the conversion of each image into a set of 
descriptors. These descriptors comprise a vocabulary which can be 
very concrete, as is the case for a dictionary of segmented object 
types, as in for example [2]. Alternatively, the descriptors can be 
more abstract, as in visual descriptors (shape, color, texture, 
bounding boxes [regions], motion, etc.). Regardless, once the image 
data has been associated with such a vocabulary, image summaries 
for each image or video clip can be processed just as if the set of 
descriptors were a language. The primary applications are 
image/video classification and image/video tagging for indexing 
and search. Search can be performed based on similarity (find “like 
images”) which can use both the concrete and abstract vocabularies 
as described above, and based on object search (the object 
type/name being the query). 

Binary Data Summarization 
Binary data can be tokenized to create a vocabulary based on 

salient binary substrings. One of the key functional data sets we may 
wish to extract is the randomness of data. Even when data is truly 
random, there are still “patterns” in the data that can be used to 
identify the data. Think about a “random” patch of the night sky. 
Truly random data features constellations, or groupings of stars that 
appear to have structure. Small children tend to draw night skies 
with the stars equally spaced, but in reality this “equally spaced” 
distribution is highly ordered (its two-dimensional entropy value is 
rather low). Thus, binary data summarization consists of finding the 
“constellations”, which we will more formally describe as 
“anomalously high-frequency” binary substrings. 

In addition, bit stream entropy, statistics on uniqueness 
collisions encountered during mass serialization database collection, 
and differential byte statistics to test for reduced entropy (indicative 
of cryptographic threats) may be utilized to tokenize binary data. 
Functional summarizations may be performed on such tokenized 
data. 

Regardless, summarization techniques can be used to 
summarize binary data, including compressed image or video data. 
Binary data summarization proceeds after the binary streams of 
interest are “tokenized”, as mentioned above. The following code 
shows how to detect the most anomalous substring in a specific 100-
bit string. We need only two settings: 

 
int MinSubstringLength = 5; 
int MaxSubstringLength = 15; 
 
These two simple settings define a reasonable range of lengths 

for substrings. Suppose, for example, we wish to find 
“constellations” in the binary data string: 
"10110110101001101010111111010111010100010011101110101

11101010001100101000011111000011000001101110011". We 
invoke the code in Figure 2 simply using: 

 
FindConstellationsInBinaryData("101
10110101001101010111111010111010100
01001110111010111101010001100101000
011111000011000001101110011"); 

 
public int FindConstellationsInBinaryData(string 
BinaryString) 
{ 
 int i, ii, j, jj = 0; 
 int num = num_matched = 0; 
 double current_ratio = 0.0; 
 double max_ratio = 0.0; 
 String current_string = ""; 
 String compare_string = ""; 
 String max_string = ""; 
 int max_num, index_max_num = 0; 
 int max_num_matched = 0; 
 
 if (BinaryString == null) 
  return (-1); 
 else if (BinaryString.Length <MinSubstringLength) 
  return (-2); 
 else if (BinaryString.Length < MaxSubstringLength) 
  return (-2); 
 
 for (i = MinSubstringLength; i < MaxSubstringLength; 

  i++) 
 { 
  for (j = i; j < BinaryString.Length; j++) 
  { 
    current_string = ""; 
    for (ii = j - i; ii < j; ii++) 
      current_string += BinaryString[ii]; 
   num = 0; 
   num_matched = 0; 
   for (jj = i; jj < BinaryString.Length; jj++) 
   { 
     num++; 
     compare_string = ""; 
     for (ii = jj - i; ii < jj; ii++) 
    compare_string += BinaryString[ii]; 
    if(current_string.CompareTo(compare_string) 
                == 0) 
     num_matched++; 
   } 
   current_ratio = (double)num_matched/ 
                        (double)num; 
   for (ii = 0; ii < i; ii++) 

       // normalizes for substring length 
     current_ratio /= 2.0;  
     if (current_ratio > max_ratio) 
     { 
    max_ratio = current_ratio; 
    max_string = current_string; 
    max_num = num; 
    index_max_num = j-i; 
    max_num_matched = num_matched; 
     } 
  } 
 } 
 return (0); 
} 

Figure 2. Program to find the longest repeated binary string 
between MinSubstringLength and MaxSubstringLength in 
length in a binary stream. 

We may define constellations to comprise substrings of length 
5 or more. The anomalously high-frequency binary substring in this 
string is “10101”, occurring with the most anomalous frequency (7 
times out of a possible 96, well above its expected value of 3 
occurrences), as highlighted here (note that two occurrences 
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overlap): 
“10110110101001101010111111010111010100010011101110101
11101010001100101000011111000011000001101110011”.  

Depending on the length of the binary information in individual 
files and the number of files, the values of minimum and maximum 
anomalously high-frequency binary substring length will vary. In 
practice, we wish to optimally define a large set of substrings, and 
let the individual summarization engines decide how they wish to 
represent the binary substrings. We then proceed to use these 
summaries as input into the meta-algorithmic classification patterns 
and determine which pattern of tokenized-binary summarizers 
works best to classify the binary strings. 

The advantage of this method is obvious: existing text 
summarizers can be used for binary summarization. The binary 
summarization can then be used for classification of binary data 
(even clustering of truly random, e.g. encrypted, binary data). In the 
case of related binary data, this provides good classification; in the 
case of encrypted or otherwise random data, this provides a good 
hash table. 

Other Data Types 
Genetic data summarization is used to identify patients 

without surrendering potentially compromising clinical and/or 
prognostic information. Here, the data converter or “mormalizer” 
converts genetic data into binary data for the purposes of functional 
summarization. Genetic data may be utilized to identify patients 
without surrendering potentially compromising clinical and/or 
prognostic information. In the case of genetic information, the 
patient’s DNA is assigned to two logical sequences: the introns, 
which are associated with the transcription of genes, and the exons, 
which are not-fully understood DNA sequences not directly 
associated with genes. These exons, since they cannot be used to 
“snoop” an individual’s risk for genetically-associated disease, are 
summarized to form the look-up for patient participation in clinical 
trials and for other situations in which a dual-access security/privacy 
mechanism is preferred. Generally, the exons may be treated as 
quaternary sequences (pairs of bits), where for example adenosine 
is “00”, cytosine is “01”, guanine is “10”, and thymine is “11”. A 
similar mapping may be used for RNA, protein sequences, and so 
forth. Once genetic data is converted into binary data, functional 
summarization of genetic data may proceed as for binary data. 
Similarly, de-identified or ”anonymized” patient healthcare data 
into binary data. Publicly available healthcare data may be 
converted to genetic and/or binary data. 

Classification Approach 
For the Weighted Voting classification pattern described 

above, once tokenization has been performed, meta-algorithmic 
approaches are used to find the optimum combination of 
summarizers for the classification. The optimum combination of 
summarization engines to use on the “tokenized non-text” data was 
determined from the set of meta-algorithmic patterns in [1]. 

The summarizations are used to reduce the document to the key 
terms and/or phrases that can then be used as the means to classify 
the document. The best class is the one for which the cosine between 
the summarization terms and the class terms is maximized. 

The vector space model (VSM) is used extensively to compute 
the similarity of documents, and in this case the similarity of the 
summarization and the class descriptors (terms, phrases or summary 
of the representative or “training” documents of the distinct classes). 
The vector space itself is an N-dimensional space in which the 
occurrences of each of N terms (e.g. terms in a query) are the values 

plotted along each axis for each of D documents. The vector 


d is 
the line from origin to the term set for the summarization of 

document d, while the vector 


c  is the line from origin to the term 

set for class c. The dot product of 


d  and 


c , or 


d •


c , is given by 
Equation 1: 
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From this, the cosine between the given class and the document 

is given by Equation 2: 
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The cosine measure, or normalized correlation coefficient, is 

used for document categorization: the maximum cosine measure 
over all classes {c} is the class selected. This is employed for each 
of the meta-algorithmic algorithms described next. 

 
(1) The Sequential Try pattern is employed to attempt 

classification of the documents (using the summarization words for 
classification) until one class is selected with a given confidence 
relative to the other classes. If no classification is obvious after the 
sequential set of tries is exhausted, the next pattern is selected. If, 
however, the following holds: 
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where TSTC is the threshold for Sequential Try Classification 

(assignment) and Nclasses is the number of document classes, then the 
Sequential Try meta-algorithmic pattern terminates and the 
document is assigned to class i. 

Importantly, TSTC can be adjusted based on the confidence in 
the individual summarizer (higher confidence generally lowers TSTC 
for a classifier), the size of the ground truth set (larger ground truth 
sets allow greater specificity of TSTC), and the number of 
summarizers to be used in sequence (more summarization engines 
generally increase TSTC for all classifiers). 
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(2) If the Sequential Try pattern results in no clear 
classification, the Weighted Voting pattern is used. Each of the 
multiple summarizers is tested against a ground truth (training) set 
of classes, and weighted by one of six methods described next. 

The first concern for this meta-algorithmic pattern is how to 
weight the individual classifiers. We are concerned primarily with 
using the error rate on the training set for weight determination. 

In a previous article [3], we showed that for a simplistic 
classification problem – wherein there are Nclasses number of classes, 
to which the a priori probability of assigning a sample is equal, and 
wherein there are Nclassifiers number of classifiers, each with its own 
accuracy in classification of pj, where j=1… Nclassifiers – the 
following classifier weights are expected, in Equation 4: 
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Here, the weight of classifier j is Wj and where the term ej is 

given by Equation 5: 
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Five other weighting schemes are also relevant. When the 

weights are proportional to the inverse of the error, then the weight 
for classifier j is given by Equation 6: 
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The weights derived from the inverse-error proportionality 

approach are already normalized – that is, sum to 1.0 – by design. 
The next weighting scheme is one based on proportionality to 

accuracy squared. The associated weights are described by the 
following Equation 7: 
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The inverse error based method heavily favors the more 
accurate classifiers in comparison to the “optimal” weighting of [3], 
while the accuracy-squared based method favors the less accurate 
classifiers in comparison to the “optimal” weighting. This implies 
that a hybrid method, taking the mean weighting of these two 
methods, may provide performance closer to the optimum method. 
The generalized hybrid scheme is given by Equation 8: 
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Where C1 + C2 = 1.0. Clearly, varying these coefficients allows 

the system designer to tune the output for different considerations – 
accuracy, robustness, lack of false positives for a given class, etc. 

The final weighting approach explored is one based on the 
inverse of the square root of the error, for which the weights are 
defined by Equation 9: 
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The behavior of this weighting approach is similar to the hybrid 

method and not greatly dissimilar from that of the optimal method. 
After the individual weights are determined, classification 

assignment is given to the class with the highest weight, defined in 
Equation 10: 
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Where NC is the number of classifiers, i is the index for the 

document classes, j is the index for the confidence each particular 
classifier i has for the classes (expressed as ClassWeighti,j), and 
ClassifierWeight is the weight of the specific classifier per the 
above. 

Conclusions 
Existing text summarization engines can be used to summarize 

non-text (image/video, binary, genetic and other life science) data. 
These summaries can then be used effectively to classify the data, 
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which has the benefit of requiring no additional classifiers 
(assuming summarization engines are readily available, which is the 
case). 

This approach also provides the means to tokenize (and 
otherwise anonymize) data in a wide variety of non-text data 
processing applications and so be able to summarize and 
functionally summarize the data for all the advantages of clustering, 
tagging, search and classification associated with text 
summarization. 

The only prior solutions we are aware of are associative (a tag 
is associated with content in a database), derivative (e.g. a digital 
sign or hash), or ontological (the identifiers are selected from a pre-
defined list such as a dictionary or other list/ontology). 
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