

Functional Summarization of Non-Text Data
Steven J Simske, Marie Vans, Margaret Sturgill; HP Labs; Fort Collins, CO USA 80525

Abstract

Summarization techniques can be applied to non-text data in
order to perform classification and clustering of important imaging,
video and other document-associated but non-text content. The
advantage to this approach is that there is a multiplicity of
inexpensive (even free) summarization engines, and so a robust
solution can be crafted with relatively modest effort. In this paper,
we present the applicability of this approach to video and imaging
data, in addition to broader binary and genetic data.

Keywords
Meta-Algorithmics, Compression, Image, Video

Introduction
Summarization can be extractive or abstractive [1]: extractive

techniques simply replicate the original text that is determined to be
the most germane as a “shorthand” for the document, while
abstraction techniques paraphrase sections of the original content,
therein condensing information and providing semantic or meaning-
based “shorthand”.

Extractive summarization sentence weighting approaches
reported in the literature are based on the keywords and key phrases
extracted; capitalization of text; grammatical case of nouns; word
co-occurrences; font formats; sentence position in a paragraph; cue
phrases such as “in summary” and “importantly”; correlation of a
sentence or phrase with the title, author reported keywords, etc.;
sentence length; and sentence centrality or redundancy with other
sentences [1].

Summarization is not just useful for the aforementioned
shorthand representations. Summarization can also be used for
functional purposes in text processing—this includes indexing and
tagging, search, classification, and document sequencing for topical
understanding. We have shown how multiple summarization
engines are used not only to improve summarization accuracy
(primary summarization) but also to select text from a document that
is optimal for use in a secondary text processing task (functional
summarization)[1].

A summarization engine is a computer-based application that
receives a text document and provides a summary of the text
document. A meta-algorithmic pattern is a computer-based
application that can be applied to combine two or more
summarizers, analysis algorithms, systems, and/or engines to yield
meta-summaries.

Non-textual content may also be summarized. For example,
images, audio and/or video content, binary data, genetic data, and/or
healthcare data can be summarized using traditional summarization
approaches. Video content may include one video, portions of a
video, a plurality of videos, and so forth. Likewise, genetic data may
include genetic data from an individual, a group of individuals,
portions of genetic data, genetic data of one or several organisms,
and so forth. Binary data includes any data that may be represented
by a sequence of 0’s and 1’s.

Meta-summaries are summarizations created by the intelligent
combination of two or more standard or primary summaries. The

intelligent combination of multiple intelligent algorithms, systems,
or engines is termed “meta-algorithmics”, and first-order, second-
order, and third-order patterns for meta-algorithmics may be
defined.

The output of a meta-algorithmic pattern may be used as input
(in the same way as the output of individual summarization engines)
for classification of the non-textual content into a plurality of
classes. Each class may include non-textual content, including
images, audio, video, binary data, genetic data, healthcare data, and
so forth. Summarization terms may be extracted from the meta-
summary, where the summarization terms include key tokens that
are representative of the meta-summary. Class terms representative
of a given class of non-textual content may be generated from the
non-textual content in each class. The summarization terms may be
compared to the class terms for each class to determine similarity
values of the non-textual content over each class. A class of the
plurality of classes may be selected based on the similarity values,
and the non-textual content may be associated with the selected
class.

Combined, these technologies create an accurate system for
data mining, classification and processing of non-text data, the high-
level architecture for which is given in Figure 1.

Figure 1. General diagram of the system. Content is filtered as
necessary to create the “Filtered Content” from which the
“Summaries” and “Meta-Summaries” are derived. The outputs of this
collective “Summarization Set” are evaluated for their utility in the

375Digital Fabrication and Digital Printing: NIP31 Technical Program and Proceedings

functional task, and the optimal “Summarization Architecture” will be
chosen for the Deployment.

Video Data
Summarization techniques are often based on identifying the

relatively rare terms in a document. Traditional methods multiply
the term frequency (TF) in a given document by the inverse of its
overall document frequency (IDF). This measurement, TF*IDF, or
other variants on this approach, can just as readily be applied to any
data sets.

As such, summarization techniques are useful for the
compressed representation of other content, such as image libraries
and video (herein termed “image data”). Summarization of image
data proceeds after the conversion of each image into a set of
descriptors. These descriptors comprise a vocabulary which can be
very concrete, as is the case for a dictionary of segmented object
types, as in for example [2]. Alternatively, the descriptors can be
more abstract, as in visual descriptors (shape, color, texture,
bounding boxes [regions], motion, etc.). Regardless, once the image
data has been associated with such a vocabulary, image summaries
for each image or video clip can be processed just as if the set of
descriptors were a language. The primary applications are
image/video classification and image/video tagging for indexing
and search. Search can be performed based on similarity (find “like
images”) which can use both the concrete and abstract vocabularies
as described above, and based on object search (the object
type/name being the query).

Binary Data Summarization
Binary data can be tokenized to create a vocabulary based on

salient binary substrings. One of the key functional data sets we may
wish to extract is the randomness of data. Even when data is truly
random, there are still “patterns” in the data that can be used to
identify the data. Think about a “random” patch of the night sky.
Truly random data features constellations, or groupings of stars that
appear to have structure. Small children tend to draw night skies
with the stars equally spaced, but in reality this “equally spaced”
distribution is highly ordered (its two-dimensional entropy value is
rather low). Thus, binary data summarization consists of finding the
“constellations”, which we will more formally describe as
“anomalously high-frequency” binary substrings.

In addition, bit stream entropy, statistics on uniqueness
collisions encountered during mass serialization database collection,
and differential byte statistics to test for reduced entropy (indicative
of cryptographic threats) may be utilized to tokenize binary data.
Functional summarizations may be performed on such tokenized
data.

Regardless, summarization techniques can be used to
summarize binary data, including compressed image or video data.
Binary data summarization proceeds after the binary streams of
interest are “tokenized”, as mentioned above. The following code
shows how to detect the most anomalous substring in a specific 100-
bit string. We need only two settings:

int MinSubstringLength = 5;
int MaxSubstringLength = 15;

These two simple settings define a reasonable range of lengths

for substrings. Suppose, for example, we wish to find
“constellations” in the binary data string:
"10110110101001101010111111010111010100010011101110101

11101010001100101000011111000011000001101110011". We
invoke the code in Figure 2 simply using:

FindConstellationsInBinaryData("101
10110101001101010111111010111010100
01001110111010111101010001100101000
011111000011000001101110011");

public int FindConstellationsInBinaryData(string
BinaryString)
{
 int i, ii, j, jj = 0;
 int num = num_matched = 0;
 double current_ratio = 0.0;
 double max_ratio = 0.0;
 String current_string = "";
 String compare_string = "";
 String max_string = "";
 int max_num, index_max_num = 0;
 int max_num_matched = 0;

 if (BinaryString == null)
 return (-1);
 else if (BinaryString.Length <MinSubstringLength)
 return (-2);
 else if (BinaryString.Length < MaxSubstringLength)
 return (-2);

 for (i = MinSubstringLength; i < MaxSubstringLength;

 i++)
 {
 for (j = i; j < BinaryString.Length; j++)
 {
 current_string = "";
 for (ii = j - i; ii < j; ii++)
 current_string += BinaryString[ii];
 num = 0;
 num_matched = 0;
 for (jj = i; jj < BinaryString.Length; jj++)
 {
 num++;
 compare_string = "";
 for (ii = jj - i; ii < jj; ii++)
 compare_string += BinaryString[ii];
 if(current_string.CompareTo(compare_string)
 == 0)
 num_matched++;
 }
 current_ratio = (double)num_matched/
 (double)num;
 for (ii = 0; ii < i; ii++)

 // normalizes for substring length
 current_ratio /= 2.0;
 if (current_ratio > max_ratio)
 {
 max_ratio = current_ratio;
 max_string = current_string;
 max_num = num;
 index_max_num = j-i;
 max_num_matched = num_matched;
 }
 }
 }
 return (0);
}

Figure 2. Program to find the longest repeated binary string
between MinSubstringLength and MaxSubstringLength in
length in a binary stream.

We may define constellations to comprise substrings of length
5 or more. The anomalously high-frequency binary substring in this
string is “10101”, occurring with the most anomalous frequency (7
times out of a possible 96, well above its expected value of 3
occurrences), as highlighted here (note that two occurrences

376 © 2015 Society for Imaging Science and Technology

overlap):
“10110110101001101010111111010111010100010011101110101
11101010001100101000011111000011000001101110011”.

Depending on the length of the binary information in individual
files and the number of files, the values of minimum and maximum
anomalously high-frequency binary substring length will vary. In
practice, we wish to optimally define a large set of substrings, and
let the individual summarization engines decide how they wish to
represent the binary substrings. We then proceed to use these
summaries as input into the meta-algorithmic classification patterns
and determine which pattern of tokenized-binary summarizers
works best to classify the binary strings.

The advantage of this method is obvious: existing text
summarizers can be used for binary summarization. The binary
summarization can then be used for classification of binary data
(even clustering of truly random, e.g. encrypted, binary data). In the
case of related binary data, this provides good classification; in the
case of encrypted or otherwise random data, this provides a good
hash table.

Other Data Types
Genetic data summarization is used to identify patients

without surrendering potentially compromising clinical and/or
prognostic information. Here, the data converter or “mormalizer”
converts genetic data into binary data for the purposes of functional
summarization. Genetic data may be utilized to identify patients
without surrendering potentially compromising clinical and/or
prognostic information. In the case of genetic information, the
patient’s DNA is assigned to two logical sequences: the introns,
which are associated with the transcription of genes, and the exons,
which are not-fully understood DNA sequences not directly
associated with genes. These exons, since they cannot be used to
“snoop” an individual’s risk for genetically-associated disease, are
summarized to form the look-up for patient participation in clinical
trials and for other situations in which a dual-access security/privacy
mechanism is preferred. Generally, the exons may be treated as
quaternary sequences (pairs of bits), where for example adenosine
is “00”, cytosine is “01”, guanine is “10”, and thymine is “11”. A
similar mapping may be used for RNA, protein sequences, and so
forth. Once genetic data is converted into binary data, functional
summarization of genetic data may proceed as for binary data.
Similarly, de-identified or ”anonymized” patient healthcare data
into binary data. Publicly available healthcare data may be
converted to genetic and/or binary data.

Classification Approach
For the Weighted Voting classification pattern described

above, once tokenization has been performed, meta-algorithmic
approaches are used to find the optimum combination of
summarizers for the classification. The optimum combination of
summarization engines to use on the “tokenized non-text” data was
determined from the set of meta-algorithmic patterns in [1].

The summarizations are used to reduce the document to the key
terms and/or phrases that can then be used as the means to classify
the document. The best class is the one for which the cosine between
the summarization terms and the class terms is maximized.

The vector space model (VSM) is used extensively to compute
the similarity of documents, and in this case the similarity of the
summarization and the class descriptors (terms, phrases or summary
of the representative or “training” documents of the distinct classes).
The vector space itself is an N-dimensional space in which the
occurrences of each of N terms (e.g. terms in a query) are the values

plotted along each axis for each of D documents. The vector


d is
the line from origin to the term set for the summarization of

document d, while the vector


c is the line from origin to the term

set for class c. The dot product of


d and


c , or


d •


c , is given by
Equation 1:







N

w
wwcdcd

1

 (1)

From this, the cosine between the given class and the document

is given by Equation 2:

















N

w

N

w

N

w
ww

ww
cd

cd

cd

cd
cd

1

2

1

2

1),cos((2)

The cosine measure, or normalized correlation coefficient, is

used for document categorization: the maximum cosine measure
over all classes {c} is the class selected. This is employed for each
of the meta-algorithmic algorithms described next.

(1) The Sequential Try pattern is employed to attempt

classification of the documents (using the summarization words for
classification) until one class is selected with a given confidence
relative to the other classes. If no classification is obvious after the
sequential set of tries is exhausted, the next pattern is selected. If,
however, the following holds:

STCclasses

ii

TijNj

cdcd






};....1

);,max{cos(),cos(
 (3)

where TSTC is the threshold for Sequential Try Classification

(assignment) and Nclasses is the number of document classes, then the
Sequential Try meta-algorithmic pattern terminates and the
document is assigned to class i.

Importantly, TSTC can be adjusted based on the confidence in
the individual summarizer (higher confidence generally lowers TSTC
for a classifier), the size of the ground truth set (larger ground truth
sets allow greater specificity of TSTC), and the number of
summarizers to be used in sequence (more summarization engines
generally increase TSTC for all classifiers).

377Digital Fabrication and Digital Printing: NIP31 Technical Program and Proceedings

(2) If the Sequential Try pattern results in no clear
classification, the Weighted Voting pattern is used. Each of the
multiple summarizers is tested against a ground truth (training) set
of classes, and weighted by one of six methods described next.

The first concern for this meta-algorithmic pattern is how to
weight the individual classifiers. We are concerned primarily with
using the error rate on the training set for weight determination.

In a previous article [3], we showed that for a simplistic
classification problem – wherein there are Nclasses number of classes,
to which the a priori probability of assigning a sample is equal, and
wherein there are Nclassifiers number of classifiers, each with its own
accuracy in classification of pj, where j=1… Nclassifiers – the
following classifier weights are expected, in Equation 4:






















j

j

classes
j e

p

N
W ln

1
ln (4)

Here, the weight of classifier j is Wj and where the term ej is

given by Equation 5:

1

1






sclassifier

j
j N

p
e (5)

Five other weighting schemes are also relevant. When the

weights are proportional to the inverse of the error, then the weight
for classifier j is given by Equation 6:









sclassifierN

i i

j
j

p

p
W

1
)0.1(

0.1

)0.1(
0.1

 (6)

The weights derived from the inverse-error proportionality

approach are already normalized – that is, sum to 1.0 – by design.
The next weighting scheme is one based on proportionality to

accuracy squared. The associated weights are described by the
following Equation 7:





sclassifierN

i
i

j
j

p

p
W

1

2

2

 (7)

The inverse error based method heavily favors the more
accurate classifiers in comparison to the “optimal” weighting of [3],
while the accuracy-squared based method favors the less accurate
classifiers in comparison to the “optimal” weighting. This implies
that a hybrid method, taking the mean weighting of these two
methods, may provide performance closer to the optimum method.
The generalized hybrid scheme is given by Equation 8:











sclassifiersclassifier N

i
i

j

N

i i

j
j

p

p
C

p

p
CW

1

2

2

2

1

1

)0.1(
0.1

)0.1(
0.1

 (8)

Where C1 + C2 = 1.0. Clearly, varying these coefficients allows

the system designer to tune the output for different considerations –
accuracy, robustness, lack of false positives for a given class, etc.

The final weighting approach explored is one based on the
inverse of the square root of the error, for which the weights are
defined by Equation 9:


 




sclassifierN

i i

j

j

p

p
W

1 0.1
0.1

0.1
0.1

 (9)

The behavior of this weighting approach is similar to the hybrid

method and not greatly dissimilar from that of the optimal method.
After the individual weights are determined, classification

assignment is given to the class with the highest weight, defined in
Equation 10:

)(

max

,
1 1

ji

N

j

N

i
j

i

WeightClassWeightClassifier

tionClassifica
C C

 
 



 (10)

Where NC is the number of classifiers, i is the index for the

document classes, j is the index for the confidence each particular
classifier i has for the classes (expressed as ClassWeighti,j), and
ClassifierWeight is the weight of the specific classifier per the
above.

Conclusions
Existing text summarization engines can be used to summarize

non-text (image/video, binary, genetic and other life science) data.
These summaries can then be used effectively to classify the data,

378 © 2015 Society for Imaging Science and Technology

which has the benefit of requiring no additional classifiers
(assuming summarization engines are readily available, which is the
case).

This approach also provides the means to tokenize (and
otherwise anonymize) data in a wide variety of non-text data
processing applications and so be able to summarize and
functionally summarize the data for all the advantages of clustering,
tagging, search and classification associated with text
summarization.

The only prior solutions we are aware of are associative (a tag
is associated with content in a database), derivative (e.g. a digital
sign or hash), or ontological (the identifiers are selected from a pre-
defined list such as a dictionary or other list/ontology).

References
[1] S.J. Simske, Meta-Algorithmics, New York: Wiley & Sons, 386 pp.,

2013.

[2] D. Larlus and F. Jurie, “Latent mixture vocabularies for object
categorization and segmentation,” Image and Vision Computing 27,
pp. 523-534, 2009.

[3] X. Lin, S. Yacoub, J. Burns and S. Simske, “Performance analysis of
pattern classifier combination by plurality voting,” Pattern
Recognition Letters 24, pp. 1959-1969, 2003.

Author Biography
Steve Simske is an HP Fellow and the Director and Chief Technologist of
the Content Solutions Lab in Hewlett-Packard Labs. Steve is currently on
the IS&T Board. He is also an IS&T Fellow and a member of the World
Economic Forum’s Global Agenda Councils on Illicit Economy and the
Future of Electronics. Steve has advanced degrees in Biomedical,
Electrical and Aerospace Engineering, and has more than 100 granted US
patents and more than 350 publications.

379Digital Fabrication and Digital Printing: NIP31 Technical Program and Proceedings

