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Abstract
To aid in the process of evaluating print quality, five print

quality metrics and methods to measure them have been devel-
oped. The attributes of interest are: (1) Edge quality, Sharp-
ness, Detail, Raggedness; (2) Scatter, Particles, Halo, Character
ghosts; (3) Readability, broken characters (4) Readability, touch-
ing characters; (5) Inverse text. The print quality is measured
from a test chart containing typical text in a range of sizes and
multiple fonts. The test chart is scanned on a commercial desk
top scanner. Quantitative values are returned without human in-
put or human surveys, but relate to human perception of these
quantities.

Introduction
Printers have become faster and less expensive. Their de-

velopment cycles have been reduced. Still it is desirable to build
products that produce high quality images. Standards exist for
print quality [1] and others are under development [4] that look
at printed text strictly from a print quality perspective. Spatter
of toner particles, edge raggedness and drop out are the types of
defects that are of interest here.

Methods have been developed that evaluate the quality of
text as a whole to predict a computer’s ability to recognize the
character symbols given the degradation level and type [2, 3, 5, 9].
These are based at looking at characteristics that were found
to confound Optical Character Recognition (OCR) systems in a
1994 study [8]. OCR systems particularly have difficulties with
touching and broken characters. They appear often in photo-
copied documents. The photocopy process is a combination of
a scanning process and a printing process. Low quality in either
part of the process will result in the image degradation.

This paper builds on these methods to return quantitative val-
ues that have a high correlation to perceptual samples. The fol-
lowing attributes are of interest: (1) Edge quality, Sharpness, De-
tail, Raggedness; (2) Scatter, Particles, Halo, Character ghosts;
(3) Readability; (4) Inverse text. Readability was divided into
two parts to consider instances of broken characters and touch-
ing characters separately, resulting in a total of five quality at-
tributes. The goal is to measure the print quality from a sample
test chart containing typical text in a range of sizes and multiple
fonts. Quantitative values should be returned without human in-
put or human surveys, but that should relate to human perception
of these quantities.

This paper will detail the process used and show the results
so the reader can confirm that the procedure has the intended ef-
fect. It starts with a description of a perceptual text quality study
and the data. Then the methods for extracting the attribute mea-

surements is described. The results are displayed, followed by the
conclusion and future work.

Perceptual Study
A perceptual study was conducted to evaluate print quality

on the test chart shown in Figure 2a. The test chart was printed on
eight printers, that were a mixture of HP and competitive products
based on market segments. HP’s print quality and image quality
experts were asked to evaluate each document for the following
text quality attributes:

1. Edge quality - Sharpness - Detail - Raggedness
2. Scatter - Particles - Halo - Character ghosts
3. Text Density - Blackness
4. Hollow characters
5. Readability
6. Inverse text
7. Overall text quality
8. Solid Area Density (SAD) (measured).

They assigned a score for each printer in the test. Each attribute
was assessed independently, in isolation, discounting all other at-
tributes or defects, and blind (not knowing the printer which pro-
duced the samples). Reviewers were asked to use the following
scores while assessing the above attributes:

1. Very Poor/insufficient
2. Lacking
3. Sufficient
4. Good
5. Excellent.

While there was a perceptual difference in the quality for
each attribute between printers, the range of values which partici-
pants reported was very low.

Figue 1 shows the scores given by the reviewers for the four
quality attributes under consideration. They range between 3.375
and 4.625, a response of less than good to better than good. Blur-
riness had the widest range of score with a difference of 1.125.
Readability had a range of only 0.775. This narrow range of re-
sponses does not provide a lot of information. Information which
engineers can use to evaluate or improve their product is needed.

The original plan was to measure values of attributes that
are representative of each quality attribute that correlate with the
survey results and generate a mapping that would produce those
survey result values from the measurements. Then measurements
from an image from a new printer could be used to generate a
score that would reflect what the reviewers would have stated.
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Figure 1. Survey rating scores given by the print and image quality experts

for the 8 printers under evaluation for four quality attributes. The scores show

a very narrow range of values.

Many different measureable attribute quantities were explored.
Attribute values were found that had moderate correlation (be-
tween ±0.6 and ±0.9) with the survey results. This was too low to
produce a reliable mapping given the narrow range of survey val-
ues, even if the range was spread. Instead the approach was taken
to generate values that subjectively to the author team matched
with observed degradation levels.

Test Chart
The evaluation is done on a test chart that can be printed

by each printer under evaluation. It was designed to print the
content that a consumer would likely print and not special test
chart elements such as star targets or bar charts. This will allow it
also to be perceptually evaluated by humans. At the same time the
chart was designed to contain some special marks such as lines,
both solid and dotted, which aid automated analysis.

The test chart developed for this work is shown in Figure 2b.
It includes text in four fonts. This includes a serif font (Times
New Roman), a sans serif font (Calibri), a script font (Coronet),
and a font with Chinese characters (DF Ming). The serif and sans
serif text appear in both standard and bold. All appear at 4 pt, 6 pt,
10 pt and 12 pt. Straight lines were available, as well as text in
each font in inverse video.

Samples of the test chart were produced on eight different
printers. The printing was done using multipurpose paper, de-
fault print drivers, and Adobe Acrobat software. All the images
were scanned at 1200 dpi on a Epson Expression 10000XL scan-
ner with optical resolution of 2400 dpi. Each page was scanned
at a preset brightness and contrast to assure consistency between
samples. All samples were scanned twice.

Any method can be used to segment the image. Because it is
a fixed image pattern at a fixed resolution, much apriori informa-
tion about the sizes of the various fields can be used. Variations
from positioning on the scanner, including both translation and
rotation add complexity. We can limit the amount of skew that
is present in the images through control of the scanning process,
but still some skew is present. We used a variation on the classic
X-Y Cut page segmentation method [6] for image segmentation.
This problem is well suited to registration to a template image, so
long as the template is rotated to the image and not vice versa, as
the interpolation necessary for the rotation of the acquired image
will introduce undesirable distortions that will affect the measure-
ments.

(a)

(b)

Figure 2. Samples of test charts used during this work. (a) The test chart

used for the perceptual study, (b) the final HP version.

Quality Attributes
From the initial group of eight quality attributes, four were

selected for further development. The attribute “readability” was
divided into two attributes, because two different degradations
that are common in printing (stroke thickening and stroke thin-
ning) lead to different images affecting readability, and by their
separation, the developers can better focus on adjusting the printer
performance for the degradation present. The goal was to produce
a quantitative measure from a high resolution scan of a page on
a commercial desk-top scanner. These numerical values should
bear a visual correlation with perceived levels of these degrada-
tions. Techniques to measure five quality attributes are described
next.

Raggedness
The raggedness quality attribute evaluates edge quality, edge

sharpness, edge detail and edge raggedness. All these are related
to how the edges of lines vary in position. Raggedness is calcu-
lated using a variation of the raggedness attribute from the ISO
13660 standard [1]. Raggedness in the ISO standard is defined as
the standard deviation of the edge boundary from the mean of its
position. This requires the use of lines or edges.

The (horizontal) underlines of the four font headers were
used to measure this attribute. The ISO specification calls for
measuring the standard deviation of the distance of the edge to its
mean at a threshold level of 60% below the maximum reflectance:

R60 = Rmax −60%(Rmax −Rmin). (1)

The maximum and minimum reflectances in the image, Rmax and
Rmin, are measured. The whole image is then normalized to a
[0,1] range. At each column the maximum Rp was found (the
darkest point, typically in the middle of the line). Then the first
row above or below that which met or fell below the R60 threshold
was selected. These points were fit to a line with least squares.
Points that were more than 2 standard deviations from the average
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Figure 3. Example of variation of edge at 20% and 60% reflectance.

Figure 4. The amount of raggedness is different for the leading versus the

trailing edge relative to the paper feed.

were excluded as noise to get a better estimate of the line position.
Based on this line position estimate, all the edge points were used
to calculate the standard deviation of the positions.

Experiments with measurements of the standard deviation of
the 60% reflectance showed that for the purpose of developing a
raggedness metric, this measurement was too stable. It did not
capture enough of the edge variations, and was too similar across
print samples with different perceived raggedness. Therefore a
second measurement at 20% reflectance was also used. Figure 3
shows the positions of the 20% and 60% reflectance for a printed
line. The higher variation in the 20% reflectance edge can be
seen. The resulting metric uses a combination of both these re-
flectances.

The standard deviation of the edge was measured on both the
top and the bottom edges of the stroke. The physical movement
of the paper relative to the printer results in different effects, Fig-
ure 4. The measurements for the 20% reflectance measurements
were weighted less than the measurements for the 60% reflectance
measurements. The four biased standard deviation measurements
were averaged and the measurements were averaged across the
four line samples. The raw measurements were then biased so
values approximately in a [0,10] range resulted:

Raggedness = 0.5∗ ∑
FONT=1..Nlines

(Rag20T +Rag20B)/2
Nlines

+ ∑
FONT=1..Nlines

(Rag60T +Rag60B)/2
Nlines

−7.(2)

This value could be subtracted from 10, if it is desired for 10 to
represent how “good” a printer is relative to raggedness, rather
than how ragged the printed lines appear.

Scatter
Scatter is also described as particles, halo or character

ghosts. The small speckles of toner that are not attached to the
character are the elements measured as scatter. The scatter mea-
surement is based on the Small Speckle Factor (SSF) OCR text
quality attribute [9]. SSF is a count of all the N4 connected com-
ponents (CC) containing fewer pixels than 50% the x-height of

Figure 5. The measurement of the text’s x-height.

the font divided by the number of CCs in the image, NCC,

SSF = ∑
n=1..NCC

CCsize < (0.5∗X_height)
NCC

. (3)

The connected components are measured from an image thresh-
olded at 157. This was an empirically chosen value, that is close
to the Otsu threshold [7] for the image. The x-height is the num-
ber of pixels between the baseline and the x-height of a character,
Figure 5. Measurements were taken from the regular text lines.
The x-height was found by taking a horizontal projection, smooth-
ing it, and looking for the first and last peaks above 75% of the
maximum. For the fonts and textual content in this test chart,
this method of estimating the text’s x-height works well. SSF is
normalized by the number of connected components in the input
image, NCC.

The SSF was calculated for all Latin text lines in the docu-
ment. The Scatter score is formed from averaging the SSF over
all NTextLines = 48 regular text lines in the test chart:

Scatter = ∑
n=1..NTextLines

SSFn

NTextLines
. (4)

Readability - Broken Characters
Readability can be thought of in many ways. It generally

reflects the comfort a reader has reading a piece of text. Because
an extended period of time is needed to measure reading comfort,
the definition and approach are often modified to instead measure
text degradations that affect the recognition of the characters, and
thus the words.

Readability is divided into two components: touching char-
acters and broken characters, as both affect readability, and they
appear as separate effects from different sources in documents.
Touching and broken characters are also attributes in OCR text
quality and the methods to measure these quantities are taken
from the OCR community [3].

To measure Readability-broken characters, the image is
thresholded at a low value to encourage almost broken charac-
ters to break. At low thresholds more characters should be broken
if they are weak and light in their printing. At high thresholds
more characters should be touching if the characters are close to
each other and smudged. From the thresholded image, the Bro-
ken Character Factor (BCF) is measured from the Times 4 pt text
lines.

The N4 connected components (CC) in the image sample
are identified. A tally is kept of which CC heights and widths
are present across all CCs in the sample. The BCF calculation
revolves around measuring the diversity of the sizes of the con-
nected components in the image. Only CCs with sizes in the BCF
“zone,” Figure 6, are of interest. The BCF zone is defined to be
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the area where the width and height are within 75% of the average
connected component height and width, and the height and width
differ by no more than 15 pixels. A 2-D histogram is calculated
of the CC heights and widths. The number of the size bins that
are filled with at least one CC sample within the “BCF zone” are
counted. This is normalized by the area of the “BCF zone:”

BCF =
number o f width,height bins f illed

number bins in BCF zone
. (5)

Figure 6. Values of connected component heights and widths that are

within the “BCF Zone.”

The BCF is calculated on an image thresholded at an empiri-
cally chosen level of 127. It was applied only to the Times font in
4 pt normal text. This font was thin enough to break. The Coro-
net font was also prone to breaking and touching characters and is
good for human perceptual evaluation of this effect, but its design
makes false alarms in the count in this numerical method likely.
The sans-serif font is not as prone to breaking, because it main-
tains a consistent stroke width that is thick enough not to break
under normal conditions. There are two 4 pt Times text lines in
the testchart. The 2 BCF measurements are summed and scaled
to produce the Readability-Broken Characters score:

BrokenScore = ∑
n=1..2

BCFn ∗10. (6)

Readability - Touching Characters
Readability - Touching Characters is measured by the Touch-

ing Character Factor (TCF). Touching characters are defined by
Souza [9] to be characters whose height is less than 3 times the x-
height of the character, but contain more than 3 times the x-height
number of pixels.

The image is thresholded at an empirically chosen threshold
of 190. For each N4 connected components in the image sample,
the height, width and number of pixels is calculated. If the height
is less than 3 times the x-height of the character, and the number
of pixels is greater than 3 times the x-height number of pixels
it is counted as a character instead of a line or a speckle. If a
character’s height to width ratio is less than 0.75, the TCF ratio
value suggested by Souza, the character is considered a touching
character. Note that for the fonts present in this test chart, the m’s
and w’s will be considered as touching characters. Since they will
be touching in all print samples this will only result in a bias in the
score values. The number of touching characters is divided by the
total number of characters in the image to form the TCF metric:

TCF =
number o f TouchingCharacters

number o f characters intext sample
. (7)

The TCF was calculated for the Times font text samples in
4 pt normal text. The results for each of the two text lines are
summed and scaled to produce the score:

TouchingScore = ∑
n=1..2

TCFn ∗10. (8)

Inverse Text
The inverse text was used to see how the dot gain affects

those text samples. Because the content of the test chart is fixed
a priori, this was achieved by measuring how many white pixels
appeared in the 4 pt inverse text zones relative to the size of the
zone,

InvertedCount = ∑
i

∑
j

I(i, j) > θ
I(i, j)

. (9)

I(x,y) is the inverse text block cropped so the border pixels that
are affected by the scanner’s point spread function will not con-
tribute to the measurements. The threshold θ = 157 was chosen
empirically. The counts from each of the 4 pt inverted text blocks
in all fonts are then summed and scaled:

InvertedTextScore = ∑
n=1..6

InvertedCountn ∗15. (10)

The value 15 is used to scale this score to be near the [0,10] range.
An appropriate baseline, such as an ideal image extracted from a
pdf, can be used to scale the values to a desired range.

Results
The estimation of quantitative measures for each quality as-

pect was applied to the scans of the test chart on eight different
printers. 2400 dpi was found to work well, but requires storage
and computation that was not necessary, because the metrics were
sensitive enough to make useful measurements at 1200 dpi. The
scanning resolution of 1200 dpi was used throughout this work.
600 dpi was found to remove image detail that was necessary to
measure the metrics, especially raggedness and scatter. Scores
were calculated for each of the five quality metrics developed.
The scores were sorted and the samples compared to see if the
resulting numbers reflected the degradations seen in the images.

The full page images scanned from printing on the eight
printers were automatically segmented. Each of the five metrics
was calculated using the appropriate parts of the page. Figures
7 - 11 show examples of portions of these pages and the corre-
sponding metric values. In each figure the sub-images are sorted
by metric value. In each case the degradation under test can be
seen to vary in quantity relative to each metric’s numerical value.
The fine nuiances in these degradations can be seen, even though
the human reviewers rated them all with scores in a small range
of values.

Conclusions and Future Work
A practical method to measure five image quality attributes

from a test chart that is easy to use has been developed. The re-
turned values relate to the degradations present in the images and
can be used to evaluate the quality of the printed sample. The im-
ages used in this study are all of relatively high quality, because
they are the printers in competition in the marketplace. Evalua-
tion on prints with higher levels of degradation would show the
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Printer #8, Raggedness score: 2.9062 Printer #5, Raggedness score: 3.0051

Printer #7, Raggedness score: 3.5235 Printer #6, Raggedness score: 3.8915

Printer #2, Raggedness score: 5.0573 Printer #1, Raggedness score: 5.3146

Printer #4, Raggedness score: 5.8418 Printer #3, Raggedness score: 6.5289

Figure 7. Samples of strokes illustrating raggedness. The numerical scores

are correlated with the perceived level of raggedness.

Printer #7, Scatter score: 2.0228 Printer #8, Scatter score: 2.0465

Printer #6, Scatter score: 2.4912 Printer #5, Scatter score: 2.7577

Printer #4, Scatter score: 8.436 Printer #3, Scatter score: 9.0116

Printer #2, Scatter score: 9.4722 Printer #1, Scatter score: 10.7635

Figure 8. Samples of strokes illustrating scatter. The numerical scores are

correlated with the perceived level of scatter.

Printer #7, Broken Chars score: 0.76497 Printer #4, Broken Chars score: 1.5168

Printer #5, Broken Chars score: 2.1953 Printer #6, Broken Chars score: 2.7741

Printer #1, Broken Chars score: 4.6154 Printer #8, Broken Chars score: 4.7654

Printer #3, Broken Chars score: 5.0744 Printer #2, Broken Chars score: 6.2719

Figure 9. Samples of strokes illustrating readability-broken characters. The

numerical scores are correlated with the perceived level of broken charac-

ters.

Printer #2, Touching Chars score: 0.99876 Printer #3, Touching Chars score: 1.0256

Printer #5, Touching Chars score: 1.2043 Printer #1, Touching Chars score: 1.5079

Printer #4, Touching Chars score: 2.1124 Printer #8, Touching Chars score: 2.5865

Printer #6, Touching Chars score: 2.7016 Printer #7, Touching Chars score: 3.2376

Figure 10. Samples of strokes illustrating readability-touching characters.

The numerical scores are correlated with the perceived level of touching

characters.

Printer #6, Inverse Text score: 2.3675 Printer #8, Inverse Text score: 4.0674

Printer #7, Inverse Text score: 4.5598 Printer #5, Inverse Text score: 6.296

Printer #4, Inverse Text score: 6.4621 Printer #3, Inverse Text score: 8.0035

Printer #1, Inverse Text score: 8.1693 Printer #2, Inverse Text score: 9.9438

Figure 11. Samples of strokes illustrating raggedness. The numerical

scores are correlated with the perceived level of raggedness.

161Digital Fabrication and Digital Printing: NIP31 Technical Program and Proceedings



robustness of these metrics. Attempts to map mesurements to the
perceptual survey results were not successful because of the nar-
row range of survey responses.

All the empirical thresholds chosen for this work will need
to be reset for any other system. These are based on scanning the
test images in gray scale on a particular scanner with particular
brightness and contrast settings. All other scanners will have dif-
ferent responses, but similar thresholds for other scanners should
not be difficult to find.

Metrics to potentially measure text density, blackness, hol-
low characters and SAD have been developed, but the samples
from the eight printers used in this study did not show enough
varaitions in blackness or hollowness to continue to evaluate their
effectiveness. The five measurements developed could be com-
bined to form an overall quality score. This requires a decision on
the weighting of each attribute.

Experiments were done with test charts (not shown) that in-
cluded the capital and lower case A-Za-z for each font and size.
The word level structure of text, even nonsense, proved to work
better, probably because some of the metrics were designed and
optimized for use in the OCR domain.

Future work would recommend modifying the test chart
slightly to make the segmentation process easier. Greater spacing
below the horizontal lines, or if the presence of lines explicitly for
that purpose were acceptable, including them in non-interfereing
locations woud help.
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