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Abstract 

This study pertains to the intrinsic mechanism drag of a belt 
image fix system which arises mainly due to friction between the 
heating element and belt.  This drag typically increases through 
module life and can be a main cause of fatigue failure for this type 
of system.  An experimentally obtained parametric damping model 
is utilized to construct an equation of motion for the system.  
Properties of the empirical model are used to make inferences 
regarding the lubrication state in the nip.  Mechanism failure due 
to lubricant starvation is discussed in the context of the model.  
Finally, reconciliation of the empirical model with 
elastohydrodynamic lubrication (EHL) theory will be discussed. 

Introduction 
The torque required to drive a fuser is important for several 

reasons not unique to image fixing technology.  In the short term, 
accommodating a high torque system requires increased 
component integrity (and associated cost) to guard against yield 
failure.  Since drive torque typically increases throughout the life 
of the system, torque can be a main source of fatigue failure as 
well.  Greater drive torque is accompanied by an increased motor 
power requirement, a topic that resonates with today’s emphasis on 
energy efficiency.   

In a belt fuser system, a nip is formed between a backup roll 
(BUR) whose exterior layer is comprised of an elastomeric 
material and a heated fusing belt (Figure 1).  During normal 
operation the belt motion is entrained with the motion of the BUR 
due to friction at that interface.  Paper with an electrostatically held 
image traverses the heated nip thereby melting the toner and fixing 
the image to the page. A fixed support frame (not shown) inside 
the belt supports the heater which slides against the inside of the 
belt supplying heat to the fusing nip.  The intrinsic mechanical 
drag of a ceramic heater in belt image fixing system arises mainly 
due to sliding friction between the heating element and the belt.   

  

Figure 1. Diagram of a belt fusing system. 

While applying lubricant to the heater/belt interface is a 
common practice, the thermodynamic and tribological implications 
of doing so are not well understood.  Although operating 

temperature and process speed are observed to influence the drive 
torque of a given system, an explicit relationship involving the said 
parameters has not been previously attempted to the authors’ 
knowledge.  The general form of such a mathematical relationship 
is the basis of this work, considering the significance of which 
allows us to make inferences regarding the lubrication state in the 
nip. 

The goal of this paper is to communicate some of our 
findings, providing a useful context for making design decisions 
regarding ceramic heater in belt fuser lubrication.  The novelty of 
our approach is in describing the mechanical drag not in terms of 
the torque required to oppose it, but instead as the source of the 
resistance itself:  viscous damping.  The drag may be modeled as 
parametric damping which depends upon heater (lubricant film) 
temperature as well as the rotational speed of the belt.  The 
influence of lubricant temperature and viscosity on fuser driving 
torque has been examined in the past [1].  In addition, the shear 
stresses encountered in thin EHL fluid films have been approached 
both analytically and empirically since the 1950’s [2], [3], [4], [5].  
The primary difference between the current investigation and 
previous work is that the corroboration with EHL theory is being 
attempted in a fusing system as opposed to an off-line test such as 
ball and plate EHL film thickness measurement.   

When system damping is plotted against temperature and belt 
speed a clear power law relationship is evident.  Such a correlation 
with temperature is not surprising since lubricant viscosity is 
known to vary in this manner.  However, the strong inverse 
relationship between belt speed and damping reveals our 
lubrication state as corresponding to the EHL regime and provides 
a means by which we can estimate the film thickness for a given 
set of operating conditions.  Knowledge of our lubrication state 
provides a context which allows us to consider mechanism failure 
modes such as lubricant starvation as well as lubricant oil loss over 
module life. 

Fuser Torque as Viscous Damping 
Fuser torque data may be more usefully appreciated by 

thinking in terms of fuser damping for several reasons.  Firstly, 
torque measurement tends to include some noise, when torque data 
is divided by measured drive speed cleaner data emerges.  This is 
due to both the torque showing significant dependence on drive 
speed as well as favorable error propagation which occurs when 
dividing the somewhat noisy torque signal by the very accurate 
RPM (driving velocity) signal.  Secondly, utilizing a model fitted 
to the damping data allows for the construction of equations of 
motion for the system which contain parameterized variables for 
temperature and drive velocity.  Finally, thinking in terms of 
damping aides the effort to resolve the lubrication state existing in 
the nip by providing a more direct bridge between actual hardware 
and EHL theory. 

By considering the belt and heater to be parallel plates of a 
given area separated by a lubricant film under shear (as depicted in 
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the enlarged portion of Figure 1) a relationship between damping, 
viscosity, and film thickness may be constructed.  The units 
associated with Equation 3 indicate that a linear relationship 
should exist between film thickness and damping given that the 
lubricant behaves as a Newtonian fluid, a conclusion which will be 
demonstrated in the next section (torque model based on EHL). 
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Figure 2. Torque vs. temperature and drive velocity (BUR RPM):  Plots of 
torque vs. drive velocity may lead one to believe that torque varies linearly 
with BUR RPM.  However, a power fit is a more appropriate representation of 
the underlying hydrodynamic behavior. 

 

Figure 3. Damping vs. temperature and BUR RPM:  Once damping is 
considered as the source of torque it is clear that damping varies according to 
a power law with drive (BUR) velocity. 

By collectively considering the curves from Figure 3, a two 
dimensional model of damping vs. speed and temperature may be 
constructed of the form 

ܤ ൌ ܽܶ௕߱௖ (4) 

Where ܤ is damping, ܶ is temperature, and ω is driving velocity, 
while ܽ, ܾ, and ܿ are fit coefficients.  A plot of such a fitted surface 
may be found in Figure 4.   

 

Figure 4. Damping vs. temp and BUR rpm:  Model of the form ܤ ൌ ܽܶ௕߱௖ fit to 
measured damping data. 

The temperature and speed dependence of damping explains 
the desire to reduce drive velocity until reaching a particular 
temperature [1] and provides a means to predict system friction for 
any given temperature/speed combination. 

Torque Model Based on Elastohydrodynamic 
Lubrication (EHL) 

The classical expression for grease thickness may be 
calculated from the lubrication theory [3].   

Figure 5. Diagram of elastohydrodynamic grease film as described by 
Equation 5. 

In dimensional form 

ߜ ൌ  ሻି଴.ଵଷ (5)ܮ/തሻ଴.଻ሺܰݑߟᇱሻ଴.଴ଷሺܧ଴.଺ܴ଴.ସଷሺߙ1.6

where 

δ = Grease film thickness in the nip 

N = Total load 

L = Roll length 

η = Grease viscosity at operating temperature and shear rate 

 Mean surface speed (u1+u2)/2 = ݑ̅
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R = Equivalent radius 1/R = 1/R1+1/R2 

E’ = Equivalent modulus of elasticity 

 1/E’=(1/2) ({1-υ1
2}/E1 +{1-υ2

2}/E2) 

α = Pressure-viscosity exponent takes into account the 
increase in viscosity with pressure η=ηoexp(αp) where p is 
pressure and η0 the viscosity prior entry into contact. 

Equation 5 indicates that grease thickness, δ, in the nip is 
affected mostly by grease viscosity and belt speed, moderately by 
BUR radius, and very weakly by load and equivalent modulus. An 
expression may be developed for the viscous torque: the motion of 
the grease is brought about by the moving belt. The pressure 
gradient dp/dx = 0, so that the fluid has a straight line velocity 
distribution. Thus, the shear stress on the belt is given by 

߬ ൌ ߟ
ௗ௨

ௗ௬
ൌ ߟ

௎

ఋ
 (6) 

The torque increases as grease film thickness decreases, as shown 
in Equation 7. 

߬ ൌ
ఎ௎

ఋ
݌݅ܰ ∙ ܮ ∙ 	ܴ஻௎ோ (7) 

For moderate loading the nip may be approximated by the 
regression 
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In the above, ݄ is BUR rubber thickness, ܴ ൌ ܴ஻௎ோ, 1/E’= (1-
ν2)/2E, and U=2ū, i.e. belt speed is twice the average speed. Using 
Equations 5, 7, and 8, the torque can be expressed as 

ܶ ൌ  ᇱሻି଴.ଷହ (9)ܧ଴.ହହ݄଴.ଷ଻ܴ଴.଼ଽሺܮതሻ଴.ଷܰ଴.ସହݑߟ଴.଺ሺିߙ2.644

Equation 9 indicates that torque is most affected by BUR 
radius and roll length, followed next by load and, to a lesser extent 
by rubber thickness and modulus. Grease viscosity and belt speed 
are least important for torque, being raised only to the power 0.3 
versus the film thickness (Equation 5), where the same product 
was raised to the power 0.7. 

A comparison of Equation 9 with Figure 2 shows good 
agreement: the experimental torque depends on speed to the power 
0.3, in good agreement with the model’s prediction (Equation 9), 
where dependence is also to power 0.3. 

Viscosity can depend on speed via shear rate. Since the 
predicted value is around 0.3, this suggests that for the lubricants 
tested, the viscosity does not depend on the shear rate. Therefore, 
in the range tested, the lubricants are operating in the Newtonian 
regime, in which case, the viscosity can be expressed in terms of 
an Arrhenius relationship. Plotting ln of the torque versus 1/T°K 
yields a straight line with a slope proportional to the activation 
energy: Ea = 9460.77 cal/mole, which is a measure of the rate of 
change with temperature. 

Using Equation 9 for torque, a damping coefficient, ܤ, can be 
defined explicitly as given in Equation 10. Thus, ܤ is determined 
as a function of the speed and the parameters involved in the 
lubrication system. Again theory and measurements agree well. 
Figure 3 shows that the dependence of damping ܤ on speed is 

between -0.6 and -0.8, whereas the theoretical value according to 
Equation 8 is -0.7.  

ܤ ൌ  ᇱሻି଴.ଷହ (10)ܧ଴.ହହ݄଴.ଷ଻ܴ଴.଼ଽሺܮതି଴.଻ܰ଴.ସହݑሻ଴.ଷߟ଴.଺ሺିߙ2.644

Comparison with Equation 4 shows that index ܿ ൌ െ0.7 and 
index ߙ is a constant coefficinet which captures the unvaried terms 
in Equation 10. 

On this basis, the motion of the belt assembly can be 
described by Equation 11.  For a given external torque, τ, the 
equation describes the evolution of motion from rest to an ultimate 
steady-state angular velocity, i.e. the equation represents the 
transient evolution of the motion. 

ሷߠܬ ൅ ሶߠܤ ൅ ߠܭ ൌ ߬ (11) 

Equations of Motion 
For the sake of simplicity the problem may be reduced from a 

rotational system to a translational system with 1 degree of freedon 
(DOF) and nonlinear damping.  The 1 DOF assumption is justified 
as long as the fuser is undergoing normal operation where no 
relative sliding motion exists between the belt and BUR.  The belt 
is considered to be a rigid mass connected to the input (driving 
velocity) through a linear spring which represents the torsional 
stiffness of the gear train and BUR core/rubber combination. 

 

Figure 6. System diagram. 

 For this system, equations of state may be written as follows:   

ሶଵݔ ൌ  ଵ (12)ݒ

ሶଵݒ ൌ
ଵ

௠
ሾ݇ሺݔଶ െ ଵሻݔ െ  ଵሿ (13)ݒܤ

ሶଶݔ ൌ  ଶ (14)ݒ

ሶଶݒ ൌ 0 (15) 

Where ݔଵ is belt position,	ݒଵ is belt velocity, ݔଶ is driving position, 
 ଶ is driving velocity, ݉ is belt mass, ݇ is the stiffness of theݒ
connection between the driving velocity and the belt, and ܤ is 
damping coefficient.  It should be noted that ݒሶଶ ് 0 when drive 
velocity is varied to model system response to that type of input.  
Replacing angular velocity ω in Equation 4 with its translational 
equivalent ݒଵ (from Equation 12) and applying to Equation 13 
provides: 

ሶଵݒ ൌ
ଵ

௠
ሾ݇ሺݔଶ െ ଵሻݔ െ  ଵ௖ሻ (16)ݒଵሺܽܶ௕ݒ

This set of equations (12, 14, 15, and 16) may be solved for a 
given time varying temperature profile and set of initial conditions 

153Digital Fabrication and Digital Printing: NIP31 Technical Program and Proceedings



 

 

once fit coefficients are established in Equation 16 for a given 
fuser and values for ݇ and ݉ have been estimated. 

Stick-Slip Motion at Low Speed 
At a combination of low speeds and high temperatures torque 

may be measured to increase with decreasing velocity.  In terms of 
damping this is equivalent to the power dependence of damping on 
belt speed transitioning through -1 from above (Figure 7).  Since 

߬ ൌ  ଵ (17)ݒܤ

and 

ܤ ൌ  ଵ௡ (18)ݒ଴ܤ

Where ܤ଴ and ݊ are equivalent to fit coefficients ܽ and ܿ in 
Equation 16 respectively and may be obtained from trend lines on 
Figure 7.  Appling Equation 18 to Equation 17 

߬ ൌ  ଵଵା௡ (19)ݒ଴ܤ

From Equation 19 it is clear that when െ1 ൏ 	݊ ൏ 0 torque 
will increase with increasing belt speed but when ݊ ൏ െ1 torque 
will decrease with increasing belt speed.  This change in behaviour 
indicates the transition from hydrodynamic lubrication to boundary 
or mixed lubrication which may be interpreted with the help of a 
plot of friction coefficient vs. Sommerfield number (Figure 8). 

 

Figure 7. Damping vs. temperature and BUR RPM:  Exponent on BUR RPM is 
less than -1 in boundary lubrication region and between 0 and -1 in the EHL 
region. 

 

Figure 8. Friction coefficient vs. Sommerfield number:  The local dependence 
of frictional drag on the Sommerfield number can be used to distinguish the 
boundary and hydrodynamic lubrication regions. [6] 

Assuming no slippage occurs between the BUR and belt, the 
friction between the belt and heater can exceed the input torque for 
sufficiently low speed causing the belt to stall. This is exemplified 
by the Sommerfield number,	ܵ୭ , which may be obtained from the 
equation shown in Figure 8. The diagram in Figure 8 defines the 
various lubrication regimes, and shows the boundary delineating 
driving from sticking or stall. For a given ܵ୭ value, Figure 8 
defines the limit of the coefficient of friction (CoF) between the 
belt and heater. If the friction force is higher than the input torque, 
the belt will stall, and if lower, then the belt will rotate. 

In the hydrodynamic region, damping values are measured to 
vary with velocity to the power of approximately that which is 
suggested by EHL theory [3], or -0.7.  Referencing the state 
equations presented earlier this corresponds to 	ܿ ൌ െ0.7 in 
Equation 16.  For constant temperature and estimated values of 1, 
1000, and 50 for ݉, ݇, and ܤ଴ respectively this reduces Equation 
16 to 

ሶଵݒ ൌ 1000ሺݔଶ െ ଵሻݔ െ  ଵି଴.଻ (20)ݒଵݒ50

ൌ 1000ሺݔଶ െ ଵሻݔ െ ଵݒ          ଵ଴.ଷݒ50 ൐ 1 (21) 

The hydrodynamic region must be bounded by a minimum 
belt velocity which measured data has suggested occurs at 
approximately ݒଵ ൏ 1 for system units (in, oz, sec).  It should be 
noted that the above parameter values are approximate and are 
intended to provide a tangible basis by which to simulate the stick-
slip phenomenon.  The estimated values are to be varied with the 
intent of displaying their relative influence on the system 
behaviour.  The value of ܿ on the other hand is obtained 
experimentally for both the hydrodynamic and mixed lubrication 
regions and will not be varied. 

In the boundary or mixed lubrication region (i.e. when ݒଵ ൏
1) ܿ is measured to assume a value of approximately -1.2 which 
impacts ݒሶଵas follows: 

ሶଵݒ ൌ 1000ሺݔଶ െ ଵሻݔ െ  ଵିଵ.ଶ (22)ݒଵݒ50

ൌ 1000ሺݔଶ െ ଵሻݔ െ ଵݒ           ଵି଴.ଶݒ50 ൏ 1   (23) 

The negative exponent on ݒଵin Equation 23 means that term 
will approach infinity as belt velocity goes to zero.  Of course in 
reality this is not the case and the damping force will approach 
some maximum value at ݒଵ ൌ 0.  In order to build a model which 
accommodates reality as well as numerical simulation of stick-slip 
motion a third region must be included in the analysis.  Work done 
by Do, Ferri, and Bauchau gives an in depth and well-articulated 
treatment of the difficulties associated with modelling various 
friction models undergoing stick-slip motion [7].  Their solution is 
to include a term of the form ି݁ܣሺ௩భ/௩ೞሻ where ݒଵ ൏  ௦ which theyݒ
attribute to Canudas de Wit et. al [8].  The term ݒ௦ is some very 
small velocity below which the mass is assumed stuck or to be 
undergoing microslip.  Applying the said term to Equation 23 
provides 

ሶଵݒ ൌ 1000ሺݔଶ െ ଵሻݔ െ ଵݒ           ሺ௩భ/௩ೞሻି݁ܣ ൏  ௦ (24)ݒ

where the condition 

|1000ሺݔଶ െ |ଵሻݔ ൐ ଵݒ           |ሺ௩భ/௩ೞሻି݁ܣ| ൏  ௦ (25)ݒ
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must also be satisfied in order to induce a slip (i.e. the spring force 
must exceed the damping force).  On the other hand, when the 
spring force is not sufficient to overcome the sticking friction, that 
is 

|1000ሺݔଶ െ |ଵሻݔ ൏ ଵݒ           |ሺ௩భ/௩ೞሻି݁ܣ| ൏  ௦ (26)ݒ

then 

ሶଵݒ ൌ 0            (27) 

Which means when the spring force is small and the belt 
velocity ݒଵ crosses the stick threshold ݒ௦ from above, ݒଵ will retain 
a small unchanged value until it is again overcome by the spring 
force.  This motion constitutes the previously mentioned microslip. 

The term ܣ first appearing in Equation 24 may be utilized to 
smooth the handoff between Equations 23 and 24, that is, when 
transitioning through the critical speed ݒ௦.  The term ܣ can be seen 
to depend upon values chosen for both ܤ଴ and ݒ௦ and may be 
determined by solving: 

ሺ௩ೞ/௩ೞሻି݁ܣ ൌ  ௦ି଴.ଶ (28)ݒ଴ܤ

or 

ଵି݁ܣ ൌ 50ሺ0.01ሻି଴.ଶ															ܣ ≅ 341.4 (29) 

for the baseline case of ܤ ൌ 50 and ݒ௦ ൌ 0.01.  In order to make 
the sign of the newly introduced term correct the following 
modification must also be applied: 

ሶଵݒ ൌ 1000ሺݔଶ െ ଵሻݔ െ ଵሻݒሺ݊݃ݏ ∗ ሺ341.4ሻ݁
ି|

ೡభ
ೡೞ
|
 (30) 

Simulations 
Equations 12, 14, 15, 21, 23, 24, 27, and 30 as well as 

conditions described by Equations 25 and 26 were simulated with 
the Runge-Kutta based method ode45 in Matlab for a range of 
values for the system parameters ݇, ܤ଴, and driving velocity	ݒଶ.  A 
plot of what will be considered the baseline case is found in Figure 
9. 

Figure 9. Baseline case:  ݇ ൌ ଴ܤ ,1000 ൌ 50, ݉ ൌ 1, driving velocity 	ݒଶ ൌ 1. 

Increasing the stiffness ࢑ may be seen to affect the stick-slip 
frequency in an approximately proportional linear fashion.  
Increasing spring stiffness also reduces the slip velocity amplitude. 
 

 
Figure 10. Effect of varying spring stiffness:  ݇ ൌ 500 െ ଴ܤ ,2000 ൌ 50, ݉ ൌ 1, 
driving velocity 	ݒଶ ൌ 1. 
 

Varying the constant portion of the damping coefficient ܤ଴ 
affects both the slip velocity and frequency due to it’s impact on ܣ 
(used in Equations 24, 25, 26, and 30) which dictates the sticking 
friction. 
 

 
Figure 11. Effect of varying ܤ଴:  ݇ ൌ ଴ܤ ,1000 ൌ 25 െ 100, ݉ ൌ 1, driving 
velocity 	ݒଶ ൌ 1. 
 

Increasing driving velocity 	ݒଶ may be seen to have a similar 
effect to increasing spring stiffness however increasing drive 
velocity leads to an increase in slip velocity amplitude. 
 

 
Figure 12. Effect of varying drive velocity:  ݇ ൌ ଴ܤ ,1000 ൌ 50, ݉ ൌ 1, driving 
velocity 	ݒଶ ൌ 0.4 െ 1.6.  Increasing drive velocity leads to an increase in both 
slip frequency and slip velocity amplitude. 

System Hysteresis 
The parametric damping system model described herein may 

be shown to exhibit hysteresis, the effect of which may potentially 
be utilized to avoid the stick-slip phenomenon in certain situations.  
When required to operate at a velocity near the mixed/EHL 
transition due to external factors, simulation results indicate that it 
should be beneficial to intentionally overshoot the desired velocity 
and subsequently approach it from above.  This effect is illustrated 
in Figures 13 and 14 where the mixed/EHL transition velocity is 1 
in/sec in both cases. 
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Figure 13. Hysteresis, approaching from below:  Even for a driving velocity 
which is 1.9x the mixed/EHL transition speed stick-slip motion is maintained in 
the steady state when approaching from below.  Baseline case considered. 
 

 
Figure 14. Hysteresis, approaching from above:  A velocity of 1.0 in/sec is 
achieved without exhibiting stick-slip motion in the steady state when velocity 
is first intentionally made to overshoot to 2.5x the mixed/EHL transition 
velocity.  Again, baseline case considered. 
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