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Abstract 

A simple linear model of piezo DoD inkjet print-head jetting 
output (drop speed, volume, momentum) provides an analytic 
prediction for the frequency response for steady state and initial 
printing streams from nozzles. The model has been applied to both 
existing commercial and development inkjet print-head devices. 

Introduction  
As a result of the industrial marketing push towards ever 

higher inkjet printing (jetting) frequencies and smaller drop sizes, 
and the rapid progress being made in applications of MEMS-based 
manufacturing, some drop-on-demand (DoD) inkjet print head 
designs rely on piezo-actuated (driven) resonant chambers to 
generate liquid droplets. The resonant oscillations set up residual 
pressure waves as a result of simple actuation drive pulses, e.g. see 
Bogy and Talke (1984) [1], Dijksman (1984) [2], Dijksman and 
Pierik (2012) [3] and these have to be tamed by a combination of 
print-head design and/or by waveform modifications, e.g. Wijshoff 
(2010) [4], Khalate et al (2011) [5] and (2012) [6], and as 
described within [7]. We will focus here on the piezo DoD print-
head output, which for most inkjet users is the drop speed and the 
drop volume that is achieved for a specific range of frequencies.  

Residual response 
Piezo-based DoD print-heads are generally actuated by means 

of piezoelectric materials to which voltage is applied (or removed).  
For resonant devices, the print-heads include main chambers with 
inlets and outlets for ink supply and jetting nozzles. In the simplest 
case, in which refill modes are ignored, the main chamber and jet 
nozzle can be represented as a single Helmholtz resonator having a 
frequency fH and Q-factor Q. Print-heads have mechanically (and 
fluidic) coupled arrays of such chambers and both jetting and non-
jetting nozzles, so finite cross-talk between neighboring channels 
can seriously disrupt the output of a specific channel (or pin#). 

Using the well-known exponentially decaying form of 
residual waves associated with a damped single mode resonant 
chamber after completion of a (piezo-driven) drop-on-demand 
print-head actuation pulse, the effect of any number of similar 
pulses can be computed analytically, in the absence of any 
dynamic changes, by simple summation of terms, as found for 
linear superposition of waves in many other physical systems. This 
simple method completely ignores the details of the actuation 
pulse duration, but changes to the shape of the frequency response 
introduced by more realistic representations of the “waveform” are 
found to be rather small. Therefore the simple model results 
presented here provide a standard basis to benchmark DoD inkjet 
print-head designs. 

Multi-pulse train modelling is deceptively simple in principle, 
because it assumes a linear response. There is plenty of evidence 
for such behavior in the academic literature [8, 9] reporting DoD 
drop speeds and drop volumes are linear in the piezo drive voltage. 
The multi-pulse trains can be single pulses repeated at a constant 

frequency, or structured pulses having ‘grayscale’ sub-drops with 
fixed time spacing that are also repeated at a constant frequency. 
Compensation pulses and modified pulse amplitudes or structured 
timing within a ‘single’ pulse, and influence of multi-pulse trains 
on the other nozzle residuals (‘cross-talk’) can be easily modelled 
by appropriate adaptations of the multi-pulse train approach. 

To understand experimental frequency sweep responses of 
inkjet print-heads first assume that the print-head output behavior 
(drop speed and volume) is linear in the applied drive voltage, as 
ink drops are known to behave like this at low print rates for DoD 
print heads from a wide range of manufacturers. The linear models 
predict print-head frequency dependence by making summations 
over suitable multi-pulse trains. The drop speed and volume are 
then proportional to drive voltage and each other at all frequencies. 

Whatever the precise pulse-train formation, it appears that the 
multi-pulse train approach allows very simple, calculable and 
exact analytic prediction results for steady state and ‘first drop’ 
behavior over all frequencies. Thus the predictive power of the 
model derives from the linear assumption and exact results for the 
(normalized) drop speed and volumes jetted by chambers with 
independently specified fH and Q.  

From this baseline, experimental results probe and measure 
the assumptions of linearity, fH and Q; they have already been used 
to help identify some early prototype print-head build quality 
issues. Furthermore the linear multi-pulse train model explains 
many features of the observed drop speed and drop volume over 
the whole range of print frequencies up to and in some instances 
beyond fH. One early success of the multi-pulse train model 
showed that the actual response to a drive voltage with a uni-
modal pulse duration measured by the pulse width at half height 
(PW) did correspond closely to the optimum value (OPW) for the 
resonant chamber: OPW=½/fH even when PW ≠ OPW. This 
experimental fact helped simplify the mathematics (presented 
below) but is not intrinsic to the linear assumption and the physics 
of the chamber response to being driven off-resonance: driving at 
(or close to) peak requires lower drive voltage than that needed for 
the same output off-resonance. Likewise the Q-factor influences 
the efficiency of the piezo-driven print-head, but given the value 
of Q (and fH) does not influence the form of the frequency 
response. 

Derivation 
The resonant response of the DoD print-head to single 1 dpd 

(sub-drop per drop) pulse excitation is assumed to be proportional 
to a single, exponentially-damped, cosine term after a time t: 

cos(2πfHt)exp(-πfHt/Q) (1) 
 
The cosine term in (1) shows that the response involves the 

chamber resonant frequency fH. The πfH/Q in (1) is controlled by 
the damping factor ζ=1/(2Q), where 0 ≤ ζ < 1 will permit residual 
oscillations. For damping ζ with a low Q > ½, the oscillation 
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frequency is lowered to fH√(1-ζ²), but in piezo DoD inkjet print-
heads the damping correction to this frequency can be neglected. 
The residual decays to e-π ≈ 4.32% after a time equivalent to the 
‘flat background’ frequency B = fH/Q. Since inkjet print-head drop 
speed specifications are typically ±5% or better, B is a reasonable 
estimate for the expected low frequency range for a flat response, 
although a lower flat frequency band may be anticipated (B/2) for 
precision applications. Q is approximately the number of 
oscillation cycles occurring before the residual response dies away 
to e-π ≈ 4.32%.  Figure1 displays the decay with time for case Q=9; 
Figure 2 shows the steady state frequency response for this case 
and Figure 3 compares these for cases Q=3, 6 and 9 according to 
the multi-pulse train results predicted by equation (2) below. 

Actuation responses are summed linearly over all the earlier 
decaying responses (see Appendix below for the underlying math); 
for multi-pulse trains of frequency f, response R(f) is given in the 
steady state limit, with a= 2πfH√(1-1/(2Q)²)/f and b=πfH/(Qf), by  

R(f)=(1-cos(a)exp(-b))/(1+exp(-2b)-2cos(a)exp(-b)) (2) 
 

 
Figure 1. Decay of residual response for Q=9 during time after a single pulse. 

Dimensionless time units (fH=1) are used so that one cycle takes 1 time unit. 

Horizontal limit lines at ±exp(-π) represent some typical speed specifications.  

 
Figure 2. Predicted frequency response for DoD print-head system of Figure 

1. Flat bandwidth B = 1/9 for frequency unit fH=1. Response can be 

interpreted as drop speed or volume (= 1 unit at low f). Typical drop speed 

ranges are shown. 

 
Figure 3. Jetting frequency response modelled for a resonant system of 

natural frequency fH =1 & Q-factors of 3, 6 or 9 (ζ = 1/6, 1/12 or 1/18, 

respectively). The efficiency for driving the resonant chamber at sub-harmonic 

peaks, rather than at lower frequencies, evidently increases with Q-factor, but 

drop response variations are also increased. (Note suppressions for clarity: 

the response axis 0.0 and small shifts for the low Q peak frequencies due to 

the factor √(1-ζ²).) 

 
Figure 4. Predicted Nth drop frequency response for the print-head of Figure 

1. The response for N=1 is flat, but as N increases the frequency spectrum 

will build systematically towards the steady state limit shown. For Q=9 as 

Figure 1. At frequencies below the m=2 sub-harmonic of fH, the main changes 

predicted will arise due to the difference between the first and second drop 

responses. 

Multi-pulse trains can also be used to predict the response R(N, f) 
after N pulses at fixed frequency f:  

R(N, f)= {(1-cos(a)exp(-b))(1-cos(Na)exp(-Nb)) + 

(sin(a)sin(Na)exp(-(N+1)b)}/{1+exp(-2b)-2cos(a)exp(-b)} (3) 
 

When Nb is sufficiently large that exp(-Nb) << 1, equation (3) can 
be replaced, for all practical purposes, by the simpler equation (2). 

Figures 2 and 3 are steady state predictions computed using 
equation (2), whereas Figure 4 for Q=9 is based on equation (3) 
and displays frequency responses for the scenario that N = 1 to 10 
jetted drops can be measured at any given printing frequency. 
Figure 4 also shows the N→∞ steady state limit from equation (2).
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The most obvious response variations arise where printing 
frequency f equals the m-th sub-harmonic frequency fH/m of the 
basic frequency: peaks at m ≥ 2; lows at m > ½(2n+1) for n > 0. 
Printing may prove advantageous at such sub-harmonic peaks [10]. 

An intrinsic “Nth-drop” effect emerges from equation (3), 
which is both Q-factor and frequency-dependent. Figure 4 shows 
the case for one particular Q=9, which confirms that the printing of 
at least N=Q drops is required for the response to approach the 
steady state solution of equation (2). This intrinsic requirement is 
in addition to the observed “first-drop” effects often attributed to 
physical changes in the ink that may arise from solvent volatility, 
dynamic surface tension, clogging, temperature changes, viscosity, 
humidity, air ingress, etc., during non-printing periods. However, 
as the N-dependency effect is intrinsic and predictable it could, in 
principle, be properly taken into account within printing software. 

Application to commercial DoD print-heads  
Measurements of the drop speed for single pulses (not 

corresponding to specific waveforms developed for real DoD 
applications) from single nozzles of standard piezo print-heads are 
compared in Figures 5 and 6 with response R(f) of equation (2). 

The test data results shown in Figure 5, for a single printing 
nozzle of a standard XJ1001 print-head, were normalized by the 
average speed value measured between 5 kHz and 6 kHz (not 
shown above). The solid curve superposed on the Figure 5 data is 
based on aligning the m = 5, 6, 7 and 8 sub-harmonic peaks for 
equation (2), suggesting that fH ≈ 188 kHz; the magnitude of the 
fitted variations is based on a Q-factor of 7, but required an extra 
cubic background response to reasonably account for the test data. 
Reproducibility of these speed measurements was estimated, based 
on measurements at lower frequencies not shown above, as ± 3%. 

 Unsurprisingly, a similar curve closely represents measured 
data from another XJ1001 print-head as shown in Figure 6 for 
Q=6.5.  

The XJ126 device has a much lower operating range (< 8 
kHz) that lies within the expected ‘flat background’ range (B ~ 25-
30 kHz), and so residual oscillations are far less evident in the test 
data. 

 

 
Figure 5. Measurements on drop speed as a function of jetting frequency. The 

blue curve was computed using Equation 2 (on a cubic background variation), 

while the data were normalized for comparison purposes to the average 

speed between 5 kHz and 6 kHz. Agreement with model equation (2) is 

reasonable.  

 
Figure 6. Test data taken for different Xaar series print-heads, showing the 

normalized drop speed vs. printing frequency, with the typical speed limits 

and blue curve generated from equation (2) for comparison with the XJ1001 

series. 

Application to other print-head geometries 
Rather more technical comparisons with response 

measurements on a similar print-head having substantially 
different [channel and nozzle] geometry are shown in Figure 7. 
Unlike the previous response speed data shown in Figures 5 and 6, 
the frequency scale shown in Figure 7 has been suppressed by 
using fH=1 units, and the two series of data points shown are  
combinations of response drop speed and response drop volume. 

The response function of equation (2) provides predictions for 
the drop speed and drop volume that are proportional to R(f). So 
by normalizing drop speeds and volumes measured at low 
frequency it is straightforward to apply known physical 
relationships between drop speed, drop volume, drop momentum 
and drop kinetic energy to deduce momentum and kinetic energy 
from data and the model:  

P = Momentum = mass × speed = R² = R^2 (4) 

KE = Kinetic energy = mass × (speed)² = R³ = R^3 (5) 
 
Figure 7 shows (with both axes normalized) an example of 

the application of this simple, output focused, theory to some 
frequency sweep data obtained for a piezo DoD print-head using a 
JetXpert system. For this device, the residual response after simple 
drive pulses revealed the m = 3, 4, 5 and 6 sub-harmonics in the 
derived P and KE (and response) frequency sweeps while the 
amplitude of the variations imply Q ~ 5.5 and hence B ~ fH/5.5. 
The general agreement between this data and the fitted curves 
establishes a useful standard benchmark for development devices.  

 

10 © 2015 Society for Imaging Science and Technology



 

 

 
Figure 7. Drop momentum and kinetic energy deduced from measured data 

for a different DoD print-head geometry compared with model predictions 

using the equations (4) and (5), as described in the text. Both scales are 

normalized and show the typical limits on speed applied to the R² and R³ 

models, respectively. 

Comments 
Jetting performance depends on the applied drive waveform. 

Extensions to the multi-pulse train theory for more complex piezo 
drive waveforms will be reported elsewhere; however the purpose 
of this simple approach was to capture measurable jetting behavior 
of piezo DoD inkjet devices without regard to the highly designed 
pulse waveforms and specific print-head ‘architecture’. Equation 
(2) has proved particularly useful when incorporated into MatLab 
fitting of experimental datasets [10]. Dijksman and Pierik [3] give 
detailed derivations of the pulse and ramped waveform responses 
for physical models of fluid motion within simple piezo DoD print 
head designs. Their math reveals that a ζ-dependent phase angle 
and absolute amplitude appear in the expression for time-
dependent decay following a single pulse. Both these features 
(phase angle and amplitude) in [3] are absent from the simpler 
equation (1) due to the normalization of response; however using 
[3] will produce results equivalent to equation (2). Neither explicit 
forms of equations (2) and (3), nor the ‘Nth drop’ variations, appear 
to be discussed elsewhere for inkjet print-heads. The math in 
Dijksman and Pierik [3] shows that the results from the derivation 
of print-head response will depend on the initial state of the 
meniscus, usually assumed to be correctly positioned within the 
nozzle and stationary. Relaxing these conditions for every drive 
pulse beyond the first would be far beyond the simple model, and 
in some sense does not appear necessary from the data shown in 
Figures 5-7. However, a better model would take into account 
more than one resonance mode, as discussed in Khalate et al [11]. 

Conclusions 
Application to inkjet printing provides the following exact 

results: new predictions of “first drop” effects irrespective of the 
typical first drop behavior attributed to nozzle blocking or solvent 
evaporation; the exact general form of the steady state frequency 
spectrum; residual wave amplitudes in the time domain; the 
number of jetting pulses required to approach the steady state 
frequency response curve for a given damping of the resonator; 
and predictions for certain drive waveforms. No sophisticated 

software is required to generate the response curves, facilitating 
automated fitting to jetting results for development print-heads.  

Appendix 
 When a piezo DoD print-head channel responds to an 

isolated ‘first’ drive pulse thereby printing a ‘first drop’ it does so 
from quiescent conditions, assuming there is no interaction or 
‘cross-talk’ between that channel and others within the print-head. 
This pulse produces a print head response that subsequently 
decays in time, but if a second drive pulse then arrives before the 
decay was complete, there will be a residual response to add 
linearly to the second pulse. This scenario can continue 
indefinitely, but the usual condition is for a period of printing N 
pulses at a fixed frequency, and for large N corresponds to 
continuous ‘steady state’ printing. Derivations of the multi-pulse 
train response can be made by linearly summing N successive 
pulse responses together, by taking into account the decay and the 
relative phase of each pulse. The math is analytic because the 
finite N-pulse sum can be expressed as  

1+x+…xn+…x(N-1) = (1- xN)( 1+x+…+ xn …) = (1-xN)/(1-x)(6) 
 
where |x| < 1.  
 
Equation (6) hides the physical identification of the Nth 

pulse, as corresponding to response amplitude 1 and the very first 
pulse now having the response x(N-1): the finite series terms appear 
in reverse time-order. This reversal implies, as it should do, that all 
‘first drop’ effects do get lost from the ‘steady state’ printing 
response. 

My math derivation expressed the nth term cos(na)exp(-nb)  
in the series as the complex variable exp(±jna - nb) = xn, where 
j=√(-1). Then (1-x*) = 1-exp(na/(±j) - nb), the complex conjugate 
of the summed denominator in equation (6), is used to obtain the 
solution in terms of the exponentials and the cos(a) and cos(Na) 
factors in equations (2) and (3).  More directly, equations (2) and 
(3) can be found by using the Z-transform [12] of cos(na)exp(-nb) 
for n ≥ 0.  
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