

Optimally orient and position multiple solid objects for batch
production in 3D printing
Jun Zeng, Ana Patricia Del Angel and Gary Dispoto; Hewlett-Packard Laboratories; Palo Alto, CA

Abstract

3D printing or layered manufacturing is a computer-aided
manufacturing process that fabricates parts through layer-wise
deposition of material(s). Even though its material deposition
techniques exploit wide spectrum of process physics including
fused model deposition, stereolithography, selective laser
sintering, laminated object manufacturing and inkjet print, its
process planning are largely universal: similar workflow steps
(e.g., build tray stacking, slicing, tool-path/dot-map generation)
and similar objectives (e.g., fast build time, high accuracy, reduced
material consumption). The configurations of the print step
encapsulate the heterogeneity of the process physics and the
associative assistive procedures (e.g., compensation, support).

This paper describes our ongoing research into developing an
optimization solution to assist process planning to meet the
multiple, oftentimes competing objectives. In particular, this paper
focuses on batching multiple objects for simultaneous production
within the same build tray. Even though throughout this paper we
use Fused Deposition Modeling (FDM, [1]) as example to
illustrate 3D printing production, our solution is printing
technology agnostic and generally applicable to other printing
technologies.

Keywords

Layered manufacturing, batch production, genetic algorithm,
parallel programming

Problem statement
Since the development of stereolithography in 1986 [2], the

layer-by-layer build technique used in rapid prototyping has also
proven to be useful for manufacturing. As a computer-controlled
manufacturing process, layered manufacturing enables efficient
and effective production of complex parts – complex geometry that
may also be coupled with complex heterogeneous material
distribution. Additionally, the setup cost of layered manufacturing
is low; this makes fabricating short run production even parts of
single copy to be economically viable.

What prevents layered manufacturing from even broader
adoptions includes production speed, addressable material, final
part quality (mechanical, geometrical, etc.), ease of use and
production cost. This is a systems engineering effort requiring
multi-disciplinary approach across process physics, material,
compute, and more. This paper describes one aspect of this
systems engineering undertaking: batch fabrication. It principally
addresses the reduction of the production time and potential
reduction of support material.

We describe a runtime software solution that provides
dynamic batching recommendation accounting for the uniqueness
of individual printing processing technology and different business

objective. This solution optimally selects, places and orients parts
to be produced simultaneously through which one or more user-
specified objectives can be optimized, for instance, raise
throughput, raise quality of service, and/or raise diversity of
product offering. This solution can be applied to manage the trade-
off between the desire for high level of the granularity of the
produced objects (driven by the packing efficiency) and the cost of
assembly. Optionally, our method can integrate this optimization
into the business-level optimization.

Even though throughout this paper we use Fused Deposition
Modeling (FDM, [1]) as example to illustrate 3D printing
production, our solution is printing technology agnostic and
generally applicable to other printing technologies.

Our solution
Figure 1 shows the system architecture of our solution. It

includes three foundational blocks: 1) a genetic-algorithm based
Optimizer (in Java) that systematically sweeps through the design
space and finds a (pareto-)optimal process plan based on
performance scores; 2) an Evaluator (in C++) that generates
machine instruction (e.g., g-codes) based on a given process plan
and analyzes it to produce performance metrics (e.g., build time,
cost); and a browser-based Visual Debugger (in Javascript) that
allows both quantitative and visual inspection of the performance.
These blocks are described below.

Optimizer. Written in Java, this code uses the genetic
algorithm [3] to automate the search for a near-optimal solution
over a very large design space. A codec module encodes a
complete design solution (e.g., valid placement of each object for
all objects to be batch-processed together) into a chromosome, a
list of floating points.

Figure 1. Solution architecture. It includes three foundational
blocks: an Optimizer in Java, an Evaluator in C++, and a
browser-based Visual Debugger in Javascript.

Optimizer
Genetic Algorithm massively parallelized (Hadoop & mult i-threading)

Model Assembler (STL)
Printing technology agnostic

Printing technology specific

Slicer (CLI, SVG)

Print simulator (gcode)

Metricizer (TXT)

Evaluator Visual Debugger

gcode

metric report

STL
CLI

326 ©2014 Society for Imaging Science and Technology

This codec module is also responsible to translate a
chromosome into a design solution. It updates Evaluator’s
configuration file (in XML) with this design solution. The
Optimizer uses this XML file to instantiate an Evaluator instance
and drives this instance to evaluate the quality of this design
solution using a set of performance metrics.

A fitness score is computed based on these performance
metrics to quantify the quality of this chromosome based on the
design objective. This code also includes a set of evolutionary
operators, e.g., cross-over, elite selection, mutation and random
reproduction. The Optimizer uses these evolutionary operators to
generate population of next generation guided by the rule of
“survival the fittest”.

When the best of current generation meets the design
objective criteria, the evolution of the population terminates.
Additionally, if the compute time reaches the allowance, the
evolution terminates and the code outputs current best solutions.
This is particularly useful for on-line deployments because it
guarantees always having a valid solution for the printer to act on.

Evaluator. Written in C++, an Evaluator is instantiated based
on a configuration XML file created by the Optimizer. As

illustrated in Figure 1, the first half of the data pipeline is printing
technology agnostic largely dealing with geometrical operations.
The second half of the data pipeline depends on the choice of the
printing technology, equipment and the application. Its major
components are explained below.

Model Assembler. Upon receiving list of objects and
placements (including orientation) for each object, this module
assembles all the objects into a single STL file following the
placement instruction.

Slicer. This module receives the aforementioned STL,
generates a set of two dimensional layers based on the layer
thickness prescribed in the configuration XML. It outputs the
layers in the form of Common Layer Interface (CLI, [4]) and
Scalable Vector Graphics (SVG, [5]). Optimization is applied to
rid the node redundancy in STL; topological information is cached
for fast compute.

Print Simulator. This module simulates the material
deposition process.

Almost all the printing technology requires additional
assistive efforts to facilitate the production and/or manage the
production quality. These assistive efforts highly depend on the

Figure 2. The compute workflow.

Generate initial population, each chromosome encodes a
complete orientations and placements for the object pool

Loop over population. Each chromosome runs on a thread or
a Hadoop Mapper.

Decode the orientations and
placements into a XML file.

Instantiate an Evaluator based on this
XML file.

Separate run directory is created to
house all outputs from Evaluator.

Generate next-generation population.

Elites. Crossover.Mutation. Random.

Objectives met or allowable compute time is
reached?

Output the Evaluator directory
corresponding to the optimal
solution inside of which includes
all the results necessary to
validate and drive production of
this solution.

yes

no

Given:
1) List of objects for batch production;
2) Build tray dimension (X, Y, Z);
3) (Multi-) Objective (production time, staircase error, etc.)

for each
chromosome,

Browser-based Visual Debugger

Drag-and-drop this
directory onto a
browser

Fitness is evaluated based on
Metricizer output.

Run Evaluator.

Population is sorted based on the fitness scores.

Drag-and-drop
this directory onto

a browser

Digital Fabrication and Digital Printing: NIP30 Technical Program and Proceedings 327

printing technology. For instance, in FDM, these assistive efforts
include creating structures to support overhanging features against
gravity. Other assistive efforts may aim to enhance higher
geometrical fidelity, appearances, structural integrity, and more.
Both production procedures (build) and these assistive procedures
(support) need to be accounted for when simulating the printing
process.

The simulator in its current form generates the necessary
support information, and then simulates the production based on
modeling the kinetics of the servo motor controls – the movement
of the build platform, the movement of extrusion heads, and so
forth. It outputs the estimates of the production time and material
cost.

We do not yet simulate realistic shape, for instance, with a
path profile. We assume each layer is replicated by the printing
technology ideally with straight wall. Based on this we estimate
the volume error and staircase effect. One of the future works can
be integrating realistic profiles of the manufacturing process.
Another future extension is to simulate the structural performance,
for instance, integrating finite element analysis (FEA), so that we
can provide predictions on part’s structural performance.

Metricizer. A set of predefined quantities are used to measure
different aspects of the production performance. Currently we have
implemented production time, material consumption (both build
material and possible support material), foot-print, build height,
build volume, geometrical error, and staircase error. These
quantities are evaluated based on integrating the simulation results.
A fitness score of a particular design is quantified based on these
metrics.

Visual Debugger. Written in JavaScript leveraging libraries
such as three.js and two.js and managed by WampServer, this
browser-based debugger visualizes entire set of simulation results
(Figure 1). The visualization is triggered by drag-and-drop the
entire simulation result folder onto the browser canvas. Different

pieces of the canvas will update itself accordingly, including:
 STL Viewer allowing interactive visualization of multiple

input objects;
 Gcode Viewer allowing interactive, close examination of

both tool paths of the extrusion heads (both build and
support);

 CLI viewer allowing visualization of layers; and
 Metric Report displaying key performance metrics in

addition to production time and material consumption on
per layer basis.

Figure 2 describes the compute workflow. The inputs include
the build tray dimension, and list of objectives we want to achieve,
for instance, minimizing production time, maximizing production
quality. These are encoded in a XML document to be read by the
Optimizer. Additional input is list of objects to be batch-fabricated
together in the form of STL.

Based on the inputs an initial population is generated. Each
element of the population, a chromosome, represents one valid
design solution. Chromosomes are evaluated in parallel; each
chromosome evaluation runs on a single thread.

On each thread the Optimizer first decodes the chromosome
into placement instructions for all objects and then writes it into a
XML file with which it then instantiates an Evaluator object and
starts simulating the print production. Upon completion of the
simulation, a fitness score is generated for this chromosome based
on the metric produced by the Evaluator.

The Optimizer then sorts the entire population based on the
fitness. If the termination condition is met, it outputs the fittest
chromosome as the design recommendation. The termination
condition may be the objective threshold (e.g., compared to the
fitness score), or may be the maximum allowable compute time
(e.g., for online applications).

If the termination condition is not met, a new population (next
generation) is produced based on this population using a set of

Figure 3. Screenshots of the Visual Debugger. At left shows a part optimally placed for printing. There is no support material required. At
right shows this part placed in the build tray with a random orientation. This results not only requirement of support material (layers colored
in red) but also longer build time because the number of required layers is increased from 11 to 34.

328 ©2014 Society for Imaging Science and Technology

evolutionary operators (e.g., mutation, elite selection, cross-over,
random generation). This new population will be then evaluated
for their fitness.

Evidence the solution works
Figure 3 illustrates a problem that requires optimally orient a

part. A randomly oriented part (shown at right of Figure 3) not
only requires support material for overhanging structure but also
requires longer build time due to larger build height (almost 3
times of that of the optimal orientation, shown at left of Figure 3).
Using our code, starting from a randomly generated population of
size of 8, it took 8 generations (shown in Figure 4) to converge to
an optimal solution costing 35.8 seconds of CPU time (Intel Xeon
3.33GHZ). As shown in Figure 3, the build time is cut by more
than 60%.

Figures 5-7 illustrate a problem that requires optimally place
8 parts into the same build tray for batch production. Figure 5
shows the convergence of the fitness of the best candidate solution
of each generation. Also plotted are the median and worst fitness
within each generation as reference. It shows that the best fitness
improves monotonically over generations while the worst fitness
remains roughly the same over all generations indicating the role
of the exploitation operators. Additional convergence acceleration
techniques that we have experimented with other optimization
problems can be integrated here for faster compute. Figure 6
shows the best placement solutions for several generations to
illustrate the continuous improvements. Visually we observe the
reduction of the use of support material and the overall build
footprint. Figure 7 confirms this visual observation with
quantitative data.

Current status
The code as described above has been completed, tested and

fully functional, as evidenced by previous section.

Next steps
Multiple directions will be pursued to expand this research,

listed below.
1. Parallelization of the Evaluator module with GPU to

exploit yet another dimension of massive parallelization.
2. Simulation of the 3D printing. Current print simulator

module limits to kinetic simulation based on prediction
of movements of servo-motors. It can be expanded to
simulate physical shapes based on path profile. It can be
expanded to simulate the part structural properties
integrating FEM tools. It will be expanded to cover
additional 3D printing technologies.

3. Additional process optimization applications such as
adaptive slicing.

4. The application into heterogeneous objects (multi-
material objects, functional-grading material objects and
objects made by digitally engineered materials) which is
the direction 3D printing inevitably progresses towards.
The use-case of this code at this moment assumes single-
material parts.

References
[1] http://en.wikipedia.org/wiki/Fused_deposition_modeling
[2] Hull, C. W., Apparatus for Production of Three-Dimensional Objects

by Stereolithography, U.S. Patent No. 4575330, 1986.
[3] Srinivas, M. and Patnaik, L. M., 1994, “Genetic algorithms: a

survey”, IEEE Comput. 27, 17-26.
[4] http://www.forwiss.uni-passau.de/~welisch/papers/cli_format.html
[5] http://en.wikipedia.org/wiki/Scalable_Vector_Graphics

Author Biography
Jun Zeng is a principal researcher with Hewlett-Packard

Laboratories and leads the Software-Defined Production research within
Print Production Automation Lab. His current research interest includes
distributed systems, machine learning and 3-D printing. Jun has dual
advanced degrees in Computer Science and Mechanical Engineering from
Johns Hopkins University. His publication includes 50+ peer-reviewed

papers and a co-edited book on computer aided design of integrated
systems. He was a guest editor of IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems. He also serves as termed

faculty and member of PhD dissertation committee with Duke University’s
Electrical and Computer Engineering Department.

Ana Patricia Del Angel is a core member of the Software-Defined

Production research team within Print Production Automation Lab,
Hewlett-Packard Laboratories. Her current research focus is optimization
of 3D printing data pipeline. Her technical expertise also includes mobile
development. Ana received a B.S. degree in Mechatronics Engineering
from Anahuac University (Altamira, Mexico). She was selected to
participate in an international exchange program with University of
Kristianstad (Kristianstad, Sweden) where she completed a year-long
Computer Science program.

Figure 4. Best orientations of consecutive generations starting
with a randomly generated initial result and ending with optimal
build orientation.

Digital Fabrication and Digital Printing: NIP30 Technical Program and Proceedings 329

 Gary Dispoto is the director of the Production Automation Team at
HP Labs. His team designs and optimizes the short run production
processes for consumer, enterprise, industrial and commercial
applications. Gary has been involved in various aspects of digital print
R&D since joining HP Labs in 1985, including extensive work in the area
of digital color reproduction. In the past decade, his research interests
have expanded to end-to-end print production and short run
manufacturing. Gary received B.S. and M.S. degrees in electrical
engineering from Stanford University and an MBA degree from the
University of Santa Clara.

Figure 5. Multi-part placement problem. The fitness of the
solution converges monotonically.

0 50 100 150 200 250 300

Fi
tn
e
ss

Generation

Best

Median

Worst

Figure 6. Multi-part placement problem. Best placements of
generations of 0, 10, 20, 50, 100, 150, 200, 250 and 299.

Figure 7. Multi-part placement problem. The reduction of the build time, use of support material, build volume and footprint is observed.

0

2

4

6

8

10

12

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250 300

Su
p
p
o
rt
 m

at
e
ri
al

B
u
ild

 t
im

e

Generation

Build time

Support material

0

500

1000

1500

2000

2500

3000

0

20000

40000

60000

80000

100000

120000

140000

160000

0 50 100 150 200 250 300

Fo
o
tp
ri
n
t

B
u
ild

 v
o
lu
m
e

Generation

Build volume

Footprint

330 ©2014 Society for Imaging Science and Technology

