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Abstract 

3D printing or layered manufacturing is a computer-aided 
manufacturing process that fabricates parts through layer-wise 
deposition of material(s). Even though its material deposition 
techniques exploit wide spectrum of process physics including 
fused model deposition, stereolithography, selective laser 
sintering, laminated object manufacturing and inkjet print, its 
process planning are largely universal:  similar workflow steps 
(e.g., build tray stacking, slicing, tool-path/dot-map generation) 
and similar objectives (e.g., fast build time, high accuracy, reduced 
material consumption). The configurations of the print step 
encapsulate the heterogeneity of the process physics and the 
associative assistive procedures (e.g., compensation, support).  

This paper describes our ongoing research into developing an 
optimization solution to assist process planning to meet the 
multiple, oftentimes competing objectives. In particular, this paper 
focuses on batching multiple objects for simultaneous production 
within the same build tray. Even though throughout this paper we 
use Fused Deposition Modeling (FDM, [1]) as example to 
illustrate 3D printing production, our solution is printing 
technology agnostic and generally applicable to other printing 
technologies.   
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Problem statement 
Since the development of stereolithography in 1986 [2], the 

layer-by-layer build technique used in rapid prototyping has also 
proven to be useful for manufacturing. As a computer-controlled 
manufacturing process, layered manufacturing enables efficient 
and effective production of complex parts – complex geometry that 
may also be coupled with complex heterogeneous material 
distribution. Additionally, the setup cost of layered manufacturing 
is low; this makes fabricating short run production even parts of 
single copy to be economically viable.  

What prevents layered manufacturing from even broader 
adoptions includes production speed, addressable material, final 
part quality (mechanical, geometrical, etc.), ease of use and 
production cost. This is a systems engineering effort requiring 
multi-disciplinary approach across process physics, material, 
compute, and more. This paper describes one aspect of this 
systems engineering undertaking:  batch fabrication. It principally 
addresses the reduction of the production time and potential 
reduction of support material.  

We describe a runtime software solution that provides 
dynamic batching recommendation accounting for the uniqueness 
of individual printing processing technology and different business 

objective. This solution optimally selects, places and orients parts 
to be produced simultaneously through which one or more user-
specified objectives can be optimized, for instance, raise 
throughput, raise quality of service, and/or raise diversity of 
product offering. This solution can be applied to manage the trade-
off between the desire for high level of the granularity of the 
produced objects (driven by the packing efficiency) and the cost of 
assembly. Optionally, our method can integrate this optimization 
into the business-level optimization.  

Even though throughout this paper we use Fused Deposition 
Modeling (FDM, [1]) as example to illustrate 3D printing 
production, our solution is printing technology agnostic and 
generally applicable to other printing technologies.   

Our solution 
Figure 1 shows the system architecture of our solution. It 

includes three foundational blocks: 1) a genetic-algorithm based 
Optimizer (in Java) that systematically sweeps through the design 
space and finds a (pareto-)optimal process plan based on 
performance scores; 2) an Evaluator (in C++) that generates 
machine instruction (e.g., g-codes) based on a given process plan 
and analyzes it to produce performance metrics (e.g., build time, 
cost);  and a browser-based Visual Debugger (in Javascript) that 
allows both quantitative and visual inspection of the performance. 
These blocks are described below.    

Optimizer. Written in Java, this code uses the genetic 
algorithm [3] to automate the search for a near-optimal solution 
over a very large design space. A codec module encodes a 
complete design solution (e.g., valid placement of each object for 
all objects to be batch-processed together) into a chromosome, a 
list of floating points.  

Figure 1. Solution architecture. It includes three foundational 
blocks: an Optimizer in Java, an Evaluator in C++, and a
browser-based Visual Debugger in Javascript. 
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This codec module is also responsible to translate a 
chromosome into a design solution. It updates Evaluator’s 
configuration file (in XML) with this design solution. The 
Optimizer uses this XML file to instantiate an Evaluator instance 
and drives this instance to evaluate the quality of this design 
solution using a set of performance metrics.  

A fitness score is computed based on these performance 
metrics to quantify the quality of this chromosome based on the 
design objective. This code also includes a set of evolutionary 
operators, e.g., cross-over, elite selection, mutation and random 
reproduction. The Optimizer uses these evolutionary operators to 
generate population of next generation guided by the rule of 
“survival the fittest”. 

When the best of current generation meets the design 
objective criteria, the evolution of the population terminates. 
Additionally, if the compute time reaches the allowance, the 
evolution terminates and the code outputs current best solutions. 
This is particularly useful for on-line deployments because it 
guarantees always having a valid solution for the printer to act on. 

Evaluator. Written in C++, an Evaluator is instantiated based 
on a configuration XML file created by the Optimizer. As 

illustrated in Figure 1, the first half of the data pipeline is printing 
technology agnostic largely dealing with geometrical operations. 
The second half of the data pipeline depends on the choice of the 
printing technology, equipment and the application. Its major 
components are explained below. 

Model Assembler. Upon receiving list of objects and 
placements (including orientation) for each object, this module 
assembles all the objects into a single STL file following the 
placement instruction.  

Slicer. This module receives the aforementioned STL, 
generates a set of two dimensional layers based on the layer 
thickness prescribed in the configuration XML. It outputs the 
layers in the form of Common Layer Interface (CLI, [4]) and 
Scalable Vector Graphics (SVG, [5]). Optimization is applied to 
rid the node redundancy in STL; topological information is cached 
for fast compute.  

Print Simulator. This module simulates the material 
deposition process.  

Almost all the printing technology requires additional 
assistive efforts to facilitate the production and/or manage the 
production quality. These assistive efforts highly depend on the 

 

Figure 2. The compute workflow. 
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printing technology. For instance, in FDM, these assistive efforts 
include creating structures to support overhanging features against 
gravity. Other assistive efforts may aim to enhance higher 
geometrical fidelity, appearances, structural integrity, and more. 
Both production procedures (build) and these assistive procedures 
(support) need to be accounted for when simulating the printing 
process.  

The simulator in its current form generates the necessary 
support information, and then simulates the production based on 
modeling the kinetics of the servo motor controls – the movement 
of the build platform, the movement of extrusion heads, and so 
forth. It outputs the estimates of the production time and material 
cost. 

We do not yet simulate realistic shape, for instance, with a 
path profile. We assume each layer is replicated by the printing 
technology ideally with straight wall. Based on this we estimate 
the volume error and staircase effect. One of the future works can 
be integrating realistic profiles of the manufacturing process. 
Another future extension is to simulate the structural performance, 
for instance, integrating finite element analysis (FEA), so that we 
can provide predictions on part’s structural performance.  

Metricizer. A set of predefined quantities are used to measure 
different aspects of the production performance. Currently we have 
implemented production time, material consumption (both build 
material and possible support material), foot-print, build height, 
build volume, geometrical error, and staircase error. These 
quantities are evaluated based on integrating the simulation results. 
A fitness score of a particular design is quantified based on these 
metrics.  

Visual Debugger. Written in JavaScript leveraging libraries 
such as three.js and two.js and managed by WampServer, this 
browser-based debugger visualizes entire set of simulation results 
(Figure 1).  The visualization is triggered by drag-and-drop the 
entire simulation result folder onto the browser canvas. Different 

pieces of the canvas will update itself accordingly, including: 
 STL Viewer allowing interactive visualization of multiple 

input objects; 
 Gcode Viewer allowing interactive, close examination of 

both tool paths of the extrusion heads (both build and 
support);      

 CLI viewer allowing visualization of layers; and  
 Metric Report displaying key performance metrics in 

addition to production time and material consumption on 
per layer basis. 

Figure 2 describes the compute workflow. The inputs include 
the build tray dimension, and list of objectives we want to achieve, 
for instance, minimizing production time, maximizing production 
quality. These are encoded in a XML document to be read by the 
Optimizer. Additional input is list of objects to be batch-fabricated 
together in the form of STL.  

Based on the inputs an initial population is generated. Each 
element of the population, a chromosome, represents one valid 
design solution. Chromosomes are evaluated in parallel; each 
chromosome evaluation runs on a single thread.  

On each thread the Optimizer first decodes the chromosome 
into placement instructions for all objects and then writes it into a 
XML file with which it then instantiates an Evaluator object and 
starts simulating the print production. Upon completion of the 
simulation, a fitness score is generated for this chromosome based 
on the metric produced by the Evaluator.  

The Optimizer then sorts the entire population based on the 
fitness. If the termination condition is met, it outputs the fittest 
chromosome as the design recommendation. The termination 
condition may be the objective threshold (e.g., compared to the 
fitness score), or may be the maximum allowable compute time 
(e.g., for online applications).  

If the termination condition is not met, a new population (next 
generation) is produced based on this population using a set of 

Figure 3. Screenshots of the Visual Debugger. At left shows a part optimally placed for printing. There is no support material required. At 
right shows this part placed in the build tray with a random orientation. This results not only requirement of support material (layers colored 
in red) but also longer build time because the number of required layers is increased from 11 to 34.    
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evolutionary operators (e.g., mutation, elite selection, cross-over, 
random generation). This new population will be then evaluated 
for their fitness.  

Evidence the solution works  
Figure 3 illustrates a problem that requires optimally orient a 

part. A randomly oriented part (shown at right of Figure 3) not 
only requires support material for overhanging structure but also 
requires longer build time due to larger build height (almost 3 
times of that of the optimal orientation, shown at left of Figure 3). 
Using our code, starting from a randomly generated population of 
size of 8, it took 8 generations (shown in Figure 4) to converge to 
an optimal solution costing 35.8 seconds of CPU time (Intel Xeon 
3.33GHZ). As shown in Figure 3, the build time is cut by more 
than 60%.  

Figures 5-7 illustrate a problem that requires optimally place 
8 parts into the same build tray for batch production. Figure 5 
shows the convergence of the fitness of the best candidate solution 
of each generation. Also plotted are the median and worst fitness 
within each generation as reference. It shows that the best fitness 
improves monotonically over generations while the worst fitness 
remains roughly the same over all generations indicating the role 
of the exploitation operators. Additional convergence acceleration 
techniques that we have experimented with other optimization 
problems can be integrated here for faster compute.  Figure 6 
shows the best placement solutions for several generations to 
illustrate the continuous improvements. Visually we observe the 
reduction of the use of support material and the overall build 
footprint. Figure 7 confirms this visual observation with 
quantitative data.  

 

Current status 
The code as described above has been completed, tested and 

fully functional, as evidenced by previous section. 

Next steps 
Multiple directions will be pursued to expand this research, 

listed below. 
1. Parallelization of the Evaluator module with GPU to 

exploit yet another dimension of massive parallelization. 
2. Simulation of the 3D printing. Current print simulator 

module limits to kinetic simulation based on prediction 
of movements of servo-motors. It can be expanded to 
simulate physical shapes based on path profile. It can be 
expanded to simulate the part structural properties 
integrating FEM tools. It will be expanded to cover 
additional 3D printing technologies. 

3. Additional process optimization applications such as 
adaptive slicing.  

4. The application into heterogeneous objects (multi-
material objects, functional-grading material objects and 
objects made by digitally engineered materials) which is 
the direction 3D printing inevitably progresses towards. 
The use-case of this code at this moment assumes single-
material parts.    
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Figure 4. Best orientations of consecutive generations starting 
with a randomly generated initial result and ending with optimal 
build orientation.  
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Figure 5. Multi-part placement problem. The fitness of the 
solution converges monotonically. 
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Figure 6. Multi-part placement problem. Best placements of 
generations of 0, 10, 20, 50, 100, 150, 200, 250 and 299. 

Figure 7. Multi-part placement problem. The reduction of the build time, use of support material, build volume and footprint is observed.  
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