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Abstract 
Data-bearing halftone images are an attractive high-capacity 

alternative to barcodes. We show that smartphone close-focus 
video capture can recover the associated data, and a frequency-
domain-based algorithm enables a robust means of detecting the 
presence as well as determining the location, scale, and 
orientation of data-bearing designs. Android and iOS mobile 
implementations achieve this at near video rates. Using these 
affine transform parameters as a starting point, a method for full 
perspective correction for precise alignment is also developed. 
This functionality is fast, accurate, and achieved without the 
benefit of fiducial marks.  

Introduction 
Barcodes are useful for labeling but can degrade the aesthetics 

of documents.  Watermarks can offer near-invisible impact on 
images, but the data capacity is limited.   Using image recognition 
to associate an index with each image requires no change to a 
printed image but data recovery will only work for a small set of 
index values which is even more limiting on data density.  While 
not covert like watermarks or image matching, embedding data in 
clustered dot halftones by shifting clusters, as in stegatones [1] or 
by dot orientation [2], yields a high data density alternative to 
barcodes.    Mobile barcode reading apps achieve a fast reaction 
time because barcode fiducials (such as the large square targets on 
QR codes) are easy to find automatically.   In this paper we 
describe a solution for detecting stegatones at nearly the video 
frame rate on smartphones, and for accurately determining scale, 
rotation, and perspective distortion.  

Previous stegatone recovery solutions assumed that the print 
and capture resolution of the stegatone were known to the system 
and thus avoided the need to recover the scale at run time.  Part of 
the issue is that solutions for detecting image objects have been 
tested on scanned imagery, which is considerably easier to 
interpret.  It has been shown that individual halftone dots can be 
detected [3], and in principle, this type of approach could be 
combined with subsequent processing to identify the marking 
period, which again in principle, could be used as part of the 
proposed scheme.  It relies on the Hough transform, however, 
which in some cases cannot be used simply due to computational 
complexity.  Other approaches involving dot size estimates have 
been proposed for clustered-dot halftones, but for a compression 
application [4]. An approach that indirectly estimates the cell size 
via descreening process has been proposed [5], but again, is based 
on techniques that may not be robust or simply fast enough for an 
efficient cell-phone-based approach.  A method for detecting 
halftone frequency has been disclosed for the purpose of 
optimizing a print production pipeline.  This mechanism, however, 
uses original (digital) imagery as opposed to data from mobile 

devices, and is based on the computation of an autocorrelation 
function. 

One type of solution that in principle would be applicable to 
the problem is the Viola-Jones object detection framework [6]; 
while this approach excels at finding macroscopic objects it is far 
too coarse for locating elements of halftone structure. Similarly, 
methods such as SIFT-based [7] or SURF-based [8] feature 
detectors, or any one of their variants, and are too slow and 
cumbersome for this application where the number of near 
identical features can grow very large at finer resolutions.  Using 
the discrete Fourier transform (DFT) to measure the fundamental 
frequency of halftone patterns, on the other hand, is a well-known 
technique, and is an important tool for assessing the interaction of 
overlaying color screens.   

In this paper we show that we can use the DFT to solve the 
detection problem and that current smartphones can perform the 
computation in real time. Our measurements of current Android 
and iOS smartphones indicated a closest focus limit of 8 cm, with a 
plot of video capture resolution plotted in Figure 1.   To increase 
the range of distances at which we can capture and recover 
stegatones, designs are printed at 400 dpi (100 halftone cells per 
inch).  The plot shows a capture resolution of 400 dpi at a distance 
of about 17cm.  This affords a workable capture distance range of 
9 cm for capturing and resolving the single pixel shifts needed for 
data recovery. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Close-focus mobile video capture resolution. 

Frequency Domain Peaks 
Consider the example mobile capture of a prototype stegatone 

passport security feature in Figure 2. As with any hand held 
capture result, the image suffers from rotation and some 
perspective distortion. The central portion of the DFT of this 
capture is shown using false color, in Figure 3, where the axes are 
given in units of cycles/captured-pixel. The disc at the center is a 
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mask to block low frequency components.  Even though the 
stegatone in Figure 2 covers less than 14% of the captured video 
frame, the periodic structure of the halftone produces very strong 
and dominant spikes in the frequency domain which are 
straightforward to locate automatically.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Oblique and rotated mobile capture. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. DFT of image in Figure 2. 

Stegatones use a classical 45-degree screen. Figure 4 depicts 
an enlarged view of the arrangement of highlight and shadow cells 
of such a halftone.  The cells are square and have a width of q 
printed pixels.  The fundamental spatial period of this screen is r 
printed pixels.  For a typical value of q=4, r is 4√2. 

 
 
 
 

 
 
 
 
 

Figure 4. Checkerboard screen, units of printed pixels. 

A highly stylized example of a captured version of the printed 
halftone of Figure 4 is illustrated in Figure 5.  For simplicity, we 
model the image of the captured halftone as having horizontal and 
vertical cell dimensions of h and v (in capture-pixels) and a 
rotation angle of . While not an accurate model of the perspective 
distortion of the halftone, it is a useful approximation which also 
allows us to introduce the properties of the DFT. 

 
 
 
 
 
 
 
 
 
 

Figure 5. Stylized captured version of Figure 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Padding with zeroes to enhance DFT Resolution.    

When applying the DFT to captured video frames of size X by 
Y pixels, the region is padded with zeroes, resulting in a frame of 
size M by N (see Figure 6).  (In the simplest case, i.e., without any 
zero padding, M=X and N=Y.) The M by N DFT amplitude reveals 
four dominant peaks p1, p2, p3 and p4. The arrangement of 
recovered peak locations around the DC coefficient is depicted in 
Figure 7.   Because we are operating on real (as opposed to 
complex) pixel values, p3 is a reflected copy of p1 through the 
origin, both at a distance of Z1

 from the DC.  Likewise p4 is a 
reflected copy of p2 at a distance of Z2.  The distances between p1 
and p2i, and p1 and p4, are given by H and ܸ, respectively. The 
distances H and V can be normalized to have units of 
cycles/captured-pixel as follows: 

H =ටቀ
ுೣ
ெ
ቁ
ଶ
൅ ቀ

ு೤
ே
ቁ
ଶ
  , V = ටቀ

௏ೣ

ெ
ቁ
ଶ
൅ ቀ

௏೤
ே
ቁ
ଶ
. 

An estimate of the rotation angle is then 

 = arctanቀ
ு೤ ே⁄

ுೣ ெ⁄
ቁ. 

A similar estimate can be obtained from Vx and Vy.  
Note that for the case where M=N, these equations simplify to: 
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Figure 7. DFT peak locations and related measurements. 

H = H/N, V = V/N, and  = arctan(Hy/Hx). 

The number of horizontal (h) and vertical (v) capture-pixels per 
cell are derived as follows:   

݄ ൌ 1
ᇱൗܪ   and  ݒ ൌ 1

ܸ′ൗ  . 

The horizontal and vertical scale estimates ሺܵு, ܵ௏ሻ	are given by 

ܵு ൌ ݄ ൗݍ 	  and 	ܵ௏ ൌ ݒ ൗݍ , 

and thus capture resolutions ሺܥு,     are estimated	௏ሻܥ

ுܥ ൌ ܵுܲ ൌ ݄ܲ ൗݍ   and  ܥ௏ ൌ ܵ௏ܲ ൌ ܲݒ ൗݍ , 

where P is the print resolution. 
Analysis of the DFT peaks associated with the example from 

Figure 2 and Figure 3 yields an estimated rotation angle of 11.2o, a 
stegatone cell size of h=5.79 by v=5.95 capture pixels, and a 
capture resolution of Ch=578.9 by Cv=595.4 dpi.  Examination of 
the peaks in Figure 3 reveals that the pattern as a whole is skewed, 
and that rather than exhibiting sharpness the peaks exhibit some 
elongation.  This behavior occurs because the capture axis was not 
perfectly perpendicular to the target. The resulting perspective 
distortion caused the image to be skewed and to demonstrate minor 
spatial variation in scale and resolution,  manifested as this peak 
elongation.  These limitations in the model used to describe the 
transformation of the halftone will be addressed in the next section. 
Nevertheless, the information already recovered is useful in 
deciding if the captured image includes a potential stegatone of the 
required resolution/scale for successful decoding, and if it has not 
been captured at too oblique a viewing angle (by setting a limit on 
the ratio of the horizontal and vertical scale parameters). 

For best performance, filtering the DFT coefficients by 
applying a DC mask is an important design consideration.  If the 
mask is too large it can obscure peaks associated with close 
focused targets; if too small it can leak extraneous DFT energy and 
confuse the location of the true peaks. Thus, it is useful to 
characterize the minimum DC-to-peak distance Z that preserves the 
desired information.  The average value of Z is normalized to find 
Z in the same manner as H and V.  Z is a function of the 

fundamental spatial period r (in units of printed-pixels/cycle), the 
print and capture resolutions P and C, that is, 

Z = P/(Cr). 
Using data in Figure 1, we know the capture resolution at closest 
focus is approximately C=900 dpi.  For stegatones printed at 
P=400 dpi and a cell size of 4 (with r=4√2), the shortest distance Z 
that preserves the desired structure is 0.078 cycles/captured-pixel. 
For these values, a reasonable radius of the DC Mask is 0.075, as is 
used in Figure 3. 

Accuracy vs. Speed 
There is a tradeoff between the accuracy and speed of 

computation based on the size of the DFT.  Figure 8 exhibits a 
simple 1D example of how insufficient DFT samples can cause 
inaccurate estimates of peak location. The blue curve represents 
the continuous Fourier transform that is sampled by the DFT.  The 
red dots are the samples at a particular resolution, and show how 
both the location and amplitude of the true peak are missed.  One 
solution is to capture a larger image size to increase DFT 
resolution.  Another alternative is to pad the image with zeroes as 
was shown in Figure 6; the zero padding in the spatial domain has 
the effect of smoothing the original DFT and re-sampling with the 
following interpolation function [9]: 

݂ሺݑ, ሻݒ ൌ sinሺݑߨሻ sinሺݒߨሻ /ሺܰܯ sinሺܯ/ݑߨሻ sinሺݒߨ/ܰሻሻ 

 

 

 

 

 

 

Figure 8. Location and amplitude inaccuracy of DFT sampling. 

Alternatively, the peak location can be more accurately 
interpolated by direct spatial-domain convolution with a local 
kernel.  Note that apart from enabling binary determination of 
whether or not the stegatone is present in the field of view, the 
accuracy of the system only has to be good enough to provide a 
starting point for the alignment system that further corrects for 
perspective distortion.  

Recovering Affine and Planar Projections 
We begin this section by extending our model of the imaging 

process to account for the skew in the locations of the 
fundamentals. It is shown that we can use knowledge of the 
halftone image from which the stegatone was constructed to find 
an estimate of the location of the transformed stegatone in the 
captured image, and then to recover the associated full planar-
perspective distortion to a high degree of accuracy. Consider first 
the two fundamentals in the top half of the DFT at locations 
p1=(u1, v1) and p2=(u2,v2) in normalized coordinates.  Representing 
the affine parameters of the transformation that map locations in 
the DFT of the undistorted halftone to that of the captured image 
(coordinates with a dash) 
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and solving for the transformation of the 2 fundamentals in the 
DFT we obtain 

ܽଵ ൌ 	 ሺݑଵ െ ଶሻݑ ܳ	,⁄
ܽଶ ൌ 	 ሺݑଶ ൅ ଵሻݑ ܳ⁄ ,
ܽଷ ൌ 	 ሺݒଵ െ ଶሻݒ ܳ⁄ ,
ܽସ ൌ 	 ሺݒଶ ൅ ଵሻݒ ܳ⁄ .

 

The parameter ܳ ൌ  represents the normalized displacement ݍ/1
parameter of the undistorted fundamentals in the DFT which are 
located at ሺܳ 2⁄ , ܳ 2⁄ ሻ and ሺെܳ 2⁄ , ܳ 2⁄ ሻ respectively for p1 and 
p2 with respect to the DC. The affine parameters in the image 
space are related to those in the DFT [10] (transpose of the 
inverse): 

 

ܣ ൌ
1

ܽଵܽସ െ ܽଶܽଷ
ቂ
ܽଵ െܽଷ
െܽଶ ܽସ

ቃ. 

 
Translation, and subsequently planar projection, can be 

recovered using gradient decent like methods in the image domain. 
We find it most efficient and robust to find the approximate 
translation first, using the scale and affine parameters recovered 
from the DFT. That is, we apply equivalent low pass filters to the 
central region of the captured image and the reference halftone, 
and find the translation parameters that minimize the difference in 
the sum square error (SSE) between them over a small subset of 
image locations. In practice, we use 100 image points arranged on 
a 10x10 grid. In Figure 9, the very low frequency filtered 
components are obtained using a box filter that has been computed 
efficiently using the equivalent of an integral image (requiring a 
fixed cost of just 4 additions a multiplication and a shift per pixel 
[11]) where the box filter of the reference image is 31 ൈ 31	pixels 
square, and has been applied to the reference image in advance.  
The central region of the captured image is filtered in real time 
using a 31ܵ ൈ 31ܵ box filter where ܵ is the scale factor recovered 
from the DFT either using the mean of the horizontal and vertical 
estimates from the previous section or directly or from the affine 
transform as: 

ܵ ൌ
ඥܽଵ

ଶ ൅ ܽଶ
ଶ	 ൅ ඥܽଷ

ଶ ൅ ܽସ
ଶ

2
. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Location of target as indicated by red outline.  

The gradient decent approach to solving image registration 
under various classes of transformation uses the Gauss-Newton 
method and was originally proposed by Lucas and Kanade [12] 
and has been refined subsequently [13]. Applying such a low pass 
filter prevents the search process from getting stuck in a local 
minima and allows registration to succeed even when the starting 
point is a far from optimal. For improved robustness, parameters to 
normalize the intensity differences between the images in the 
optimization process are estimated separately and directly from the 
images and the current estimate of the translation and affine 
parameters. The image intensity parameters (scale and offset) are 
only updated each time the optimization finds a local minimum; 
the method continues until no further improvements are possible or 
a maximum iteration count is exceeded.  

The filtered version of the central 256x256 region of the 
captured image is used as the reference image plus a border half 
the size of the box filter	ሺ31ܵ/2ሻ. The iterative optimization 
locates this image region within the target filtered “reference 
halftone” image from which the position of the stegatone (which 
has the same dimensions as the reference halftone) within the 
captured image can be estimated and is shown as the red outline in 
Figure 9.  

Once the location of the Stegatone is stable within the capture 
frame video sequence, its location in the current frame can be 
finalized. Starting from the affine estimate the parameters of a 3x3 
homogeneous transformation G that represents the planar 
projection (or homography) are computed using a second 
application of the Lucas and Kanade method, i.e.,  

൥
ᇱݔ

ᇱݕ

ᇱݓ
൩ ൌ ൥

݃ଵଵ ݃ଵଶ ݃ଵଷ
݃ଶଵ ݃ଶଶ ݃ଶଷ
݃ଷଵ ݃ଷଶ ݃ଷଷ

൩ ቈ
ݔ
ݕ
ݓ
቉ ൌ ቂ ܣ ݐ

்ݒ 1
ቃ ቈ
ݔ
ݕ
ݓ
቉, 

or simply  xᇱ ൌ ᇱᇱݔ x,  where finallyܩ ൌ 	 ᇱݔ ⁄ᇱݓ   and ݕᇱᇱ ൌ ᇱݕ	 ⁄ᇱݓ .  
Note that the planar homography is the most general form of this 
transformation and can be considered a combination of the affine A 
and translation t components when the elements of v are zero. 

In this step, we construct a multi-scale band-pass 
representation of the halftone reference and captured images 
similar in spirit to the approach of Bouguet [14], and use a larger 
number of image locations (20x20) in the optimization. Again, for 
the reference halftone this information can be computed in 
advance, and for the captured image limited to a region that 
includes the estimated location of the stegatone plus a modest 
border (in our experiments 100 pixels). As the affine plus 
translation estimate of the transform is already demonstrates good 
performance,, we have found that the multi-scale representation 
only needs two levels and is constructed by successive application 
of Gaussian filters (3 times) where the effective standard deviation 
(σ) of the filter doubles at each level. We find a value of σ=3.0 for 
the base level (and hence σ=6.0 and σ=12.0 for the subsequent 
levels) to be effective (though for the captured image they are 
modified to take into account the scaling factor recovered by the 
DFT). The two band-pass levels are achieved by subtracting 
successive pairs of Gaussian filtered images to give the final multi-
scale Difference of Gaussian representation, as shown in Figure 
10.  

In general, if an image has been pre-filtered by a Gaussian of 
size σ and we wish to achieve an effective smoothing of size sσ 
(where s is a scale factor) then the additional Gaussian filter that 
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needs to be applied is of size ݏ√ߪଶ െ 1 or in this case where the 
scale factor is two 3√ߪ which reduces the computational cost by 
15%.  As the Gaussian is separable it is computed as two one-
dimensional filters and thus the speed improvement is linear. In all 
cases we represent our images and their filtered counterparts using 
16 bit integer arithmetic. 

An example of the final determined location including the 
perspective distortion is shown overlaid as a red quadrilateral in 
Figure 10. Note that we do not align the reference image itself as 
part of the multi-scale approach, only the band-pass versions. The 
reference halftone image is of course highly idealized and is 
geometrically different from the printed and captured stegatone 
derived from it, since in the latter many of the individual dot 
locations have been changed to encode information. As a result, 
there is no advantage in terms of transform accuracy in proceeding 
down to register the image details themselves. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Successive difference-of-Gaussian representations of reference 

halftone (top), and captured stegatone (bottom). 

Mobile Performance 
The detection system was implemented on both Android and 

iOS phones.  Using a 256x256 video capture window the clients 
can perform DFT-based scale and rotation determination at 20 
frames per second.  Example views of our UI (on an iPhone) are 
shown in Figure 11.  An overlay of a red rectangle indicates that 
the object is not resolved; in the case on the left, the camera 
distance is closer than 8 cm and thus unable to focus.  The overlay 
turns green when the characteristic periodic structure is clearly 
evident and correctly positioned in the DFT, as in the case on the 
right.  Only images that are within the correct scale range are 
analyzed for full perspective alignment.  

This initial part of the processing can be carried out close to 
the frame-rate of the sensor even on a low powered mobile device, 
but in this system, the detected image is uploaded to a server for 
full perspective alignment.  The fine scale alignment depends on 
the size of the Stegatone and its scale within the image but for the 
example shown in Figure 9 this alignment is typically achieved in 
less than 0.2 seconds on an 8 core processor.  This stage can 
clearly take place on a mobile client with some increase in 
processing time, but must be fast enough to provide smooth 
interaction with a user. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Mobile UI of fast stegatone detector. Screen captures from an 

iPhone 5S. 

We also tested the data recovery rates for mobile captured 
images on 76 small passport “ghost” images of size 15x10 mm, 
representing faces from a wide range of ethnicities and ages.  Our 
hand-held tests varied the capture distance, rotation angle and 
obliqueness for each of these images. The results were surprisingly 
robust with an average recovery rate of 90.5% for the 256 encoded 
bits. Further optimization of the effective modulation and error-
protection schemes for video capture will enable improvements 
upon this result. 

As a final example that illustrates the versatility of this 
system, consider the circular logo in Figure 12.  Even though there 
are no rectangular edges to find, the clear peaks in the DFT (Figure 
13) allow for fast and accurate detection of scale and orientation. 
Based on the peak locations the system finds a rotation angle of 
24.9o, a stegatone cell size of h=7.55 and v=7.51 capture pixels, 
and a capture resolution of Ch=755.4 by Cv=750.6 dpi.  While we 
demonstrated that this DFT-based detection scheme is well suited 
for locating stegatones, it works equally well for any 2D periodic 
or quasi-periodic pattern.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Mobile capture of a non-rectangular-shaped stegatone.  
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Figure 13. DFT of the captured image in Figure 12. 
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