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Abstract 

Inkjet systems are growing both in scale and in breadth of 
applications.  This is particularly true with respect to production 
inkjet systems, digital fabrication, and industrial marking 
applications.  There are systems now being designed and/or 
manufactured with up to hundreds of thousands of jets.  To satisfy 
the requirements for throughput, image quality, materials 
compatibility, and reliability, printhead manufacturers are 
continuing to improve their design by offering more nozzles per 
inch, smaller drops, higher frequency, and other features.  
However, while the inherent printhead design may be the most 
important factor in achieving improved performance and 
reliability, there are many other factors that impact the system and 
are essential to achieving the desired customer needs in terms of 
quality, cost, and delivery.  Sufficient understanding and design 
implementation of these system-level issues are as key to a 
successful product as is the raw printhead performance.   

Introduction  
Inkjet systems are growing both in scale and in breadth of 

applications.  This is particularly true with respect to production 
inkjet systems, digital fabrication, and industrial marking 
applications.  There are systems now being designed and/or 
manufactured with up to hundreds of thousands of jets [1].  Fig. 1 
shows a sampling of the progression of the number of jets utilized 
in a printing system as a function of time for Tektronix/Xerox 
products. 

 

 
Figure 1.  Xerox printing systems: total jets vs. time 

Fig. 2 shows the approximate number of jets in current high 
speed inkjet printing systems.  To satisfy the requirements for 
throughput, image quality and reliability, manufacturers are 
continuing to improve their design by offering more nozzles per 

inch, smaller drops, and other features.  The most fundamental of 
printhead specifications are the number  

 

 
Figure 2.  Total jets for various production printers 

of jets, drop mass, and jetting frequency.  Accuracy of drop 
placement is an additional specification and refers to the ability to 
fire drops perpendicular to the printhead face is characterized by 
nozzle error distribution.  Fig. 3 shows a typical plot of nozzle 
error distributions. 

 
Figure 3.  Nozzle error distribution 

However, while these specifications are needed for good 
system design. there are many other factors that impact 
performance and reliability which are essential to achieving the 
desired customer needs.  This data is nearly useless to the customer 
without a full understanding of the impact these quantities will 
have on wider system needs and performance.   
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Xerox industrial print head technology has advanced 
consistently over the past 25 years.  Over this time, performance, 
print quality, and reliability have increased steadily while cost per 
nozzle has dropped dramatically.  Continuous improvements have 
been made in materials, driver efficiency, packing density, flow 
rate, drop size uniformity, and manufacturing process capability 
[2].  This industrial head design includes the benefits of a multi-
color architecture allowing mono, 2-color, 4-color and even 8-
color operation within a single hardware implementation.   
Systems and methods are used which allow a reliable and long life 
high-temperature operation, the ability to jet over a wide viscosity 
range, extreme cost effectiveness, and extremely high volume flow 
rate.  However, even with this said, other improvements and 
innovations important to the system requirements and performance 
have also been achieved.  For example, print quality degradation 
can occur not only because of chronic missing jets and steady-state 
nozzle error distribution, but also due to intermittent missing jets, 
off-axis jetting, transient drop position errors, drop mass control 
and stability, alignment of multiple printheads, and adequate 
normalization control of velocity and/or drop mass of individual 
jets.  Also, other important system topics include external 
contamination control such as abatement and thermal circuit 
design, external contamination mitigation including the purge and 
wiper system design, jet failure detection and single jet repair 
technology, jet redundancy, and missing jet hiding.  Therefore, this 
paper is intended to briefly review the full set of customer needs 
and important system and subsystem capabilities and innovations 
required to achieve the performance and features for the next 
generation of highspeed inkjet systems, digital fabrication, and 
industrial marking applications.  Sufficient understanding of the 
combined system-level issues are as key to a successful product as 
is the fundamental printhead performance specifications. 

Printhead and Ink Design  
The foundation of any inkjet system design is the printhead.    

There are many different printhead manufacturers and 
technologies.  The most common technologies are typically 
characterized by the driver mechanism, i.e., piezo and bubblejet.  
However, in terms of industrial inkjet applications, bubblejet has 
severe limitations with respect to material compatibility, i.e., the 
fluid has to boil to be jettable.   For this reason, many state-of-the-
art industrial inkjet systems are built with piezo printhead 
technology.  Also, new applications typically require new inks, and 
the ability of the printhead to accommodate different inks and 
materials is important. 

The development of an inkjet system takes substantial time 
and money.  Therefore, it is important to build a foundation with 
flexibility and robustness in mind.  Xerox printhead technology is 
built by combining layers of stainless steel together at high 
temperature.  The printheads achieve the ability to jet multiple 
colors by constructing thin channel manifolds that direct ink to 
individual columns of nozzles.  These manifolds are interlaced 
with manifolds of other colors, so the channels span the width of 
the printhead.  The structure of the printhead is shown in Fig. 4.  
Finger manifolds (1) channel the ink to the nozzles.  (2) and (3) 
show the distribution of the two interleaved colors on the top half 
of the printhead and the other two interleaved colors on the bottom 
half.  (4) and (5) show the same manifolds from the aperature side.  

The main manifold (6) supplies the finer manifolds with ink. The 
actual print head jet geometry columns repeat the full length of the 
head, as indicated by the arrows.  The specifics of the design are 
well documented [2].  In terms of flexibility, different applications 
may require multiple colors.  Single color printhead designs are the 
norm.; however, there are some 2-color designs as well.  Current 
Xerox technology allows for 1, 2, 4 and even 8 colors to be used 
within a single printhead.  This manufacturing process creates a 
diffusion bonded jetstack capable of high temperature operation 
and high materials compatibility compared to silicon-based 
designs.   

 

 
Figure 4.  1/2/4/8 color print head fluid path design 

Head life exceeding 5 years at 150C is commonplace with 
these designs.  Also, remanufacture of the printheads is an 
additional benefit.  The dropmass, number of jets, and jetting 
frequency together determine the flow rate of the printhead and the 
inherent resolution.  Smaller drops are better for some applications 
(photo-quality documentation), while larger drops can be optimal 
for many industrial applications (ceramics, masking, textiles, 3D 
printing, and other industrial applications).             

Printhead Normalization 
Most inkjet applications can benefit from precise control of 

drop position, velocity, and/or intensity.  Decreased drop 
misdirectionality leads to improved text and graphics, and/or more 
repeatable and more accurate industrial marking structures.  As 
shown in Fig. 3, printhead manufacturers often advertise statistical 
misdirectionality based on individual jet performance.  However, 
while this intrinsic printhead design controls some of the 
directionality, there are other system-level processes of 
importance, especially when considering the transient responses 
and the requirements of any specific application.  This is especially 
true for demanding applications where multiple heads are stitched 
together and are used to print on dramatically non-uniform 
surfaces as that found on industrial and/or consumer applications 
with large and/or varying head to media gaps.     
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Printhead normalization involves techniques to manipulate the 
waveform and thus the drop size for individual heads and 
individual nozzles within a head.  Fig. 5 illustrates a basic drive 
waveform for a Xerox industrial print head.  These characteristic 
are documented [3,4,5]. 

 
Figure 5. Flexible waveform for printhead normalization 

For piezoelectric inkjet printing, the drop mass depends on the 
voltage profile applied to the piezoelectric element.  The overall 
size of the waveform for any given printhead can be modulated to 
adjust the average mass.  Also, a custom ASIC is used which 
allows segments of the waveform to be chopped at numerous 
levels of resolution below the peak-to-peak voltage and provides 
the ability to correct for jet-to-jet variations.   

Fig. 6 shows a section of one possible test pattern used to 
measure the drop mass.  The process direction is in the vertical 
direction.  The test pattern is scanned or measured with an inline 
sensor or an auto document feeding scanner.  The reflectance of a 
solid strip is used as a surrogate for the mass, and fiducial dashes 
are used to identify the position of each jet.  The reflectance is 
measured and the jetting waveform is adjusted on an individual 
nozzle basis to achieve the best possible uniformity.   

 

 
Figure 6. Normalization test pattern 

Other errors can be corrected digitally with features built into 
the printhead which allow shifting of each pixel column, or each 
individual jet by an integer multiple of the resolution.  Fig. 7 shows 
a cartoon of a horizontal line before and after this correction [6].   

 
Figure 7. Pixel alignment normalization 

In the figure, the process direction is in the vertical direction 
and it is seen for example that the fourth jet from the left is 
delayed.  By shifting the pixel column of the individual jet that 
prints this digital image one pixel earlier, and making similar 
adjustment for some other jets, the horizontal line can be printed 
more accurately.   

Other normalization methods are possible as well.  For 
example, one can compensate drop mass changes that are intrinsic 
to the head or fluid.  Specifically, jets fired at full frequency may 
have a different mass than drops fired in isolation as would occur 
in a low area coverage region.  Individual waveform segments can 
modified on a head by head basis which offers another degree-of-
freedom in product optimization.  For example, Fig. 8 shows how 
this drop mass variation can be decreased for a multi-head printing 
system.  Each graph plots drop mass versus firing frequency for 
full frequency and partial frequency [2]. 

While not required for every fluid, even though the drop 
masses can be equalized at full frequency, they may differ at the 
lower frequency.  This results in head to head banding for light 
areas if uncorrected.  The lower plot shows how the drop mass 
variation can be equalized among the heads, thus correcting or 
eliminating the banding.  

 

 
Figure 8.  Drop mass vs. frequency for both uncorrected and corrected multi-
head printing systems. 

Transient Dot Position 
The fundamental building blocks of any inkjet imaging 

system are structures consisting of full and half frequency lines and 
isolated drops [7].  Simple cartoon images and actual patterns 
taken from a halftone pattern are shown in Fig 9. 
 

uncorrected

corrected
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Figure 9. Isolated pixels, ½ freq lines and full frequency lines 

Fig. 10 shows an example of these structures both normal (left) and 
with transient drop positional patterns and drop shape errors 
(right).   

 

 
Figure 10.  Transient jetting example 

Such defects must be eliminated during the design phase and 
are particularly important parameters of study and characterization 
when implementing a new fluid.  Hopefully, this example can help 
one appreciate the level of design and optimization required with 
respect to printhead performance and product requirements, etc... 
even above and beyond drop mass and normalization. 

Multi-Printhead Layout 
Economics, reliability, and manufacturability typically require 

that large inkjet systems be constructed with some form of a 
multiple printhead layout.  For example, one possible arrangement 
of the print heads is shown in Fig. 11.   

 

 
Figure 11. Arrangement of prinheads for 4-color printing  

The print heads cannot be butted together, so the print heads 
must be interlaced to eliminate gaps when transitioning from one 
print head to the other.  For example, in the Xerox CiPress, a print 
head row consists of 7 print heads and provides printing at a 
resolution of 300 spi in the cross process direction.  A second pair 
of print box units can be interlaced with the first to increase the 

printing resolution to 600 spi.  Some systems achieve this type of 
layout by installing multiple heads within a system, others create a 
module that incorporate multiple printheads.  However, the size 
and of these systems is typically large regardless.  The choice of 
architecture does not determine the performance.  The performance 
is based on the technology and the engineering and includes things 
such as the achieved uniformity, the printhead life and cost (or cost 
per kiloprint, etc…), the ease of serviceability, and ease and/or 
automation of alignment, etc…   

Registration 
A misalignment between printheads exceeding about 20 

microns will lead to an objectionable white space if there is a gap, 
or a dark line if there is an overlap.  These tolerances can be 
difficult to achieve and maintain, because of manufacturing 
tolerance, measurement system accuracy, and thermal expansion.  
Therefore, to maintain good image quality, it can be advantageous 
to continually monitor and adjust the registration between the print 
heads across the print zone.  In products both in the office and 
production, both the initial alignment of the print head array and 
the maintenance of alignment are automated with the use of 
custom closed-loop sensor systems.  The Xerox ColorQube office 
copier uses an “Ink On Drum” (IOD) sensor and the Xerox 
production inkjet press CiPress uses a “Image on Web Array” 
(IOWA) sensor.  These sensors operate by printing and capturing a 
test pattern that identifies the position of every jet and can thus 
infer the misregistration between printheads.  If an analysis shows 
the print heads are not registered, an adjustment is performed.  
Each head may be potentially mis-registered in the cross process 
(x) direction, the process (y) direction, or rotated with respect to 
the process direction (roll).  Fig. 12 shows an exaggerated cartoon 
of these registration errors between a subset of the heads.    

 
Figure 12.  Illustration of alignment errors between printheads 

Fig. 13 shows the actuators that can be adjusted to maintain 
registration.   

 

 
Figure 13.  Illustration of adjustment actuators 
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