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Abstract 

Recently, printing technologies have been adapted for the 
manufacturing of flexible electronic devices such as RFID 
antennas, capacitors, rectifiers, organic thin film transistors, 
photovoltaics, etc. In contrast to traditional production of 
electronics, printing technologies can enable low cost, high 
throughput, and large-area processing on flexible polymer 
materials. Photolithographical processes can be substituted by 
direct printing, e.g. of metal nanoparticles (NPs) or organic inks 
on flexible polymer foils. After the deposition of the materials by 
printing, curing, drying and/or sintering is required to remove 
solvents and additives, and to develop a functional layer. The 
operating temperatures of these post-printing processes are 
usually higher than the tolerable temperature of the polymer foils, 
which results in plastic thermal deformations of the foils. Photonic 
sintering is considered as one of the promising technology, 
especially for R2R processing, to prevent the thermal deformation 
of the substrate. It allows processing in ambient conditions without 
damaging the polymer foils due to energy exposure in 
microseconds-scale.  

In this paper, the effect of photonic sintering conditions on 
inkjet printed copper oxide (CuO) layers was investigated. We 
found that the conductivity is proportional to the exposure energy. 
However, excessive energy will lead to “over-sintering” and thus 
destroys the copper layer. Optimized photonic sintering 
parameters were proposed to obtain inkjet-printed copper layers 
with high conductivity and no layer ablation. 

Introduction  
Photonic sintering by using intense pulsed light (IPL) has 

been introduced a couple of years ago as promising tool for printed 
electronics [1]. This technology was formerly developed for the 
sintering of silver (Ag) NPs, copper oxide (CuO) NPs, and 
composite materials in ambient conditions [2, 3]. Especially in 
printed electronics, IPL sintering technology has many benefits in 
comparison to traditional curing processes.  Most of the traditional 
sintering processes such as simple thermal heating on a hot plate or 
in an oven apply heat to the entire materials including the 
substrate. However, in most cases of printed electronics the 
substrates are polymer foils, which are temperature sensitive [4]. In 
contrast, IPL sintering is a more selective sintering method as it 
heats mainly the deposited materials by exposure of broadband 
light in microsecond scale. Therefore, it is possible to prevent 
thermal defects on the substrate and reduce the very long and 
sophisticated paths of post-treatment processes usually employed 
in traditional heating concepts for R2R printing systems.   

Recently, CuO ink is considered as a promising material for 
conductive layers, which is an alternative for the commonly used 
copper (Cu), silver (Ag) NPs and gold (Au) NPs. In case of CuO 

inks it was shown, that the photonic sintering method can eliminate 
the oxide shell of Cu without damaging the polymer substrate. Kim 
et al. published one of the first research work about IPL sintering 
of nanoparticles painted on polymer substrates [1]. They already 
predicted the promising potential of this technology for printed 
electronics. Starting from the year 2010, several articles were 
published focusing on IPL sintering of printed layers, e.g. based on 
inkjet, flexography or gravure printing. In most cases, the research 
works demonstrate the feasibility of IPL sintering for copper and 
silver in the field of printed electronics. They focus on the 
investigation of the layer conductivity as function of energy 
irradiation [1, 5]. Ryu et al. suggested the equation for chemical 
reduction of copper oxide photonic sintering process [6]. The 
effect of multi-pulse irradiation on the spin coated copper oxide 
layer was studied as well as the re-oxidization effect during the 
pulse irradiation [7]. However, there are barely scientific studies 
regarding the relations among irradiation energy, pulse number, 
and topography of sintered copper layers. Detailed investigations 
of parameters for photonic sintering and its influences on the 
printed layer are prerequisite to evaluate the applicability of 
photonic sintering for R2R-printed electronics. 

In the current study, the correlations were analyzed between 
photonic sintering parameters such as energy exposure, pulse 
length and number of pulses, and the conductivity of sintered Cu 
layer. Morphological properties of the layers (e.g. thickness, 
roughness, and structure of the layer) were determined by means of 
scanning electron microscopy (SEM) and surface profiler. 
Electrical properties of the layers were measured by four-point 
probe station.  We found that in general the conductivity is 
proportional to the exposure energy. However, excessive energy 
will lead to “over-sintering” and thus destroys the copper layer by 
removing it from the substrate. Optimized photonic sintering 
parameters were proposed to obtain inkjet printed Cu layers with 
high conductivity. 

Experiments 
For the Cu layers on PET substrate, a commercially available 

water-based CuO ink (ICI-002HV, NovaCentrix) with 16wt% CuO 
was used. The CuO ink was percolated by a 
polytetrafluoroethylene filter with a pore size of 1 µm before 
printing. One side primer-coated PET foil (IJ-220, NovaCentrix) 
was applied as substrates. An Autodrop deposition system from 
Microdrop Technologies was employed to print the prepared CuO 
ink in squares of 5 x 5 mm² (Fig. 1). The system was equipped 
with a piezoelectric inkjet single nozzle having a nozzle orifice 
diameter of 69 µm. The IPL sintering system PulseForge 3200 
(NovaCentrix, Fig. 2) was used to sinter the inkjet-printed CuO 
layers. The IPL system consists of four xenon lamps, a reflector 
system, a water-cooled metal plate for the samples (see scheme of 
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Figure 7. Roughness of sintered Cu layer according to energy exposure and 
number of pulse 

The thickness of sintered Cu layer decrease as the exposure energy 
increase. With a single pulse of 3.98 J/cm2 ~ 5.01 J/cm2, the 
thickness was reduced to about 1000 nm ~ 800 nm. In case of 
double pulses of 5.01 J/cm2 ~ 7.03 J/cm2, the thickness decreased 
to 680 nm ~ 450 nm. However, for the highest energy used in the 
triple pulse with 9 J/cm2, the thickness increased again up to 500 
nm because of generation of huge grains in the Cu layer, which 
induced shear force for delamination from the substrate. The trend 
of roughness of sintered Cu layer also follows that of the thickness. 
As the irradiation energy increases, the roughness decreases 
because grain size increased except for the cases of high energies 
from 6.53 J/cm2 ~ 7.03 J/cm2 as well as 8.02 J/cm2 ~ 9.98 J/cm2. 

Conclusion 
We investigated the photonic sintering of inkjet printed CuO 

layers on primer-coated PET substrates. The resistance of Cu 
decreased as the irradiation energy increased.  Excessive IPL 
energies lead to delamination of the Cu layer. The delamination 
occurred along the deposition path of the inkjet droplets and is 
caused by an irregular distribution of materials within the layer. 
Multiple pulses of IPL were proposed to avoid delamination of the 
layer and enabling at the same time high conductivity. In contrast 
to literature, less number of pulses were required which is 
beneficial for higher productivity, e.g. in R2R processing. 
Therefore, these results can be easily adapted for continuous R2R 
IPL sintering of CuO layers.  
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