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Abstract 

A general two-dimensional coding means is presented that allows 
recovery of data with only a cropped portion of the code, and 
without knowledge of the carrier image. A description of both an 
encoding and recovery system is provided, along with an 
illustrative example. Our solution involves repeating a payload 
with a fixed number of bits assigning one bit to every symbol in the 
image, whether that symbol is data carrying or non-data carrying, 
with the goal of guaranteeing recovery of all the bits in the 
payload. The system uses row-to-row offset itself to communicate 
the value of the phase of the circular payload.  The recovery 
system is given the number bits in the payload, evaluates each 
candidate shift and ranks its confidence based on the variance of 
the payload bits. Symbols determined to be unsuitable for recovery 
are labeled “abstentions” and not included in the decoding 
process; special consideration is given to the checkerboard 
subsampling that can occur in the case when halftone cells are 
used as the data-carrying symbols.  This particular application is 
examined via tests to quantify the likelihood of unrecoverable bits 
and bit redundancy as a function of phase and crop window size. 

Introduction 
Embedding data in hardcopy is increasingly important for 

content linking, security and other applications.  Data-bearing 
hardcopy is most often accomplished with various types of 
multidimensional barcodes, along with more aesthetically pleasing 
alternatives of encoding symbols in halftones [1][2]. We propose a 
new solution for recovering data when only a part of the data-
bearing image can be captured, as in Figure 1, with no knowledge 
of the carrier image. The solution is designed to be robust in the 
presence of one or more of the many print-scan process 
degradations [3] that can hurt data integrity.    

 
 
 
 
 
 
 
 
 

Figure 1.Image and Capture Region. 

The following notation is used to describe the approach: 
B Bit count of Payload, known to encoder and decoder. 
P Payload bits, representing a value between 0 and 2B-1. 
D Row-to-row Offset of the payload in the image. 
P’ Candidate recovered Payload. 

D’ Candidate row-to-row offset. 
S Payload in Standard form. 
C Circular shift to get the payload from the standard form. 
L  Length of the crop window. 
W  Width of the crop window. 

Encoding System 
The goal is to represent a payload, P, consisting of B bits in a 

two-dimensional array of symbols.  One bit is assigned to every 
symbol in the image, whether that symbol is data carrying or non-
data carrying.  The size of the array is W symbols in width by L 
symbols in length.  For each row of symbols, the payload is 
repeated until the end of the row.  For each successive row the 
payload is circularly shifted D bits relative to the row above it.   
 
Circular Shifting and Standard Form 

When cropping a pattern of a repeating sequence of bits it is 
important to point out that the individual bit positions within the 
cropped content can be ambiguous.  However, any contiguous 
sequence of B bits will represent one of B circularly shifted 
versions of that sequence.  As a very simple 4-bit example, the 
table below illustrates the different versions of an example 4-bit 
code 11002, where “Shift” is the number of bits the code is 
circularly right shifted.    

Shift b3 b2 b1 b0 Decimal Value 

0 1 1 0 0 12 

1 0 1 1 0 6 

2 0 0 1 1 3 

3 1 0 0 1 9 
 
The original code is completely determined if both the Shift 

value and bit sequence are known.   By defining a differentiating 
criterion, any circularly shifted code can have one version that is 
always singled out from the other versions.   One such criterion is 
based on the value of the shifted version.  In the above table, note 
that a shift of 2 yields the smallest value and a shift of 0 yields the 
largest value.  The Standard Phase of a Payload is represented as S, 
and follows the convention that the Standard Phase corresponds to 
the Circular Shift C yielding the smallest version of the shifted 
code.  In our example, P=11002,  S= 00112 and C=2.   

Note that the shifted versions of some Payloads may have the 
same value.  P=10102 is one such example. Note that the Standard 
Phase S = 01012 can be achieve with a Circular Shift C=1 or C=3.  
As the result is identical it does not matter which one is used.  A 
successful encoding scheme enables recovery of (1) all of the bits 
in the circular payload, and (2) the value of the circular shift C.

Encoded Image 
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Window 

W

L 
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Encoding Phase in the Offset 
Encoding is achieved by repeating a stream of codes S in a 

two-dimensional array where each successive row is circularly 
shifted by D samples with respect to row above, where D is an 
integer multiple of C, i.e., D=kC, where k is an integer.  Since our 
payload is B bits, the accumulated shift can be identically 
expressed by reducing it by modulo-B.   

A detailed example for the payload P=11002 is discussed.  
While this code is very short (B=4) it exemplifies the same process 
performed on longer payloads.  Figure 2 illustrates this encoding in 
an 11 by 21 array of one-bit symbols.   As was shown earlier, 
P=11002 has a Standard Phase S=00112 and Circular Shift C=2.  In 
this simple example the row-to-row shift D = C = 2, that is, k=1.  
The first row starts with a zero-shifted version of S repeated across 
all symbols in the row.  The second row is circularly right shifted 
by D=2.  The third row shifts the second row by D=2 or the first 
(standard form) row by D=2+2=4, or the simpler Modulo-4 shift of 
0.  The pattern continus for all lines completing the two-
dimensional array.   A cropped subset of size W by L (= 9 by 6) is 
depicted by the rectangular black outline. 

 
Figure 2. Example encoding of P=11002, S=00112 in an array of symbols.  
Black frame indicates captured crop region. 

Recovery System  
The capture device only reads a cropped W x L subset of the 

array.   The number of payload bits B and the offset-to-shift integer 
k must be communicated to the recovery system, the purpose of 
which is to find the Payload P.   Recovery is achieved through the 
following five steps. 

(1) Decode each symbol in the cropped region, and assign 
each a value of 0, 1 or “abstain”.  If the symbol is degraded due to 
damage, noise, or otherwise is deemed un-decodable it will not be 
included in the recovery process. 

(2) For each candidate row-to-row offset D’i ∈ {0, k, 2k, …, 
k(B-1)}, find an estimate of a shifted payload P’i, and the 
confidence associated with that estimate. Given a candidate shift, 
for each bit position {bB-1, … , b1, b0} find an average of all non-
abstained values and assign a value of 0 if that average is less than 
0.5 and a value of 1 if that value is greater than or equal to 0.5.   
The uncertainty, uj, for each bit position is then the absolute value 
of the difference between bit estimate and the average.  A bit’s 
uncertainty will range from 0 to 0.5. The Confidence of a candidate 
shift is then 

Confidence = 1 – (2/B)Σuj, for  j={0, 1, 2, … , (B-1)}, 
and ranges from 0 to 1.0.  

(3) Select the value of D’ and P’ with the highest value of 
Confidence. 

(4) Convert P’ into Standard Phase S by finding the minimum 
value of all B circular shifts of P’. 

(5) Circularly right shift S by C=D/k to obtain the Payload P.  

Example 
To continue the with the values used in the encoding example 

above, the crop used for recovery is shown as the 9x6 boxed subset 
of symbols in Figure 2.   

(1) To simplify the recovery example, it is assumed that there 
are no abstentions and each symbol is decoded as a 0 or 1 as 
shown.   

(2) The value B=4 is available to the recovery system, so there 
are 4 candidate shifts D’ = {0,1,2,3} to test. The process of testing 
one candidate shift, D’ =1, is shown in Figure 3. For this Candidate 
Shift the 9x6 crop of decoded symbols is shown with the leftmost 
bit position of the shifted payload highlighted in yellow to aid in 
following the process. “Samples” indicates the number of values 
for each of the four bit positions; since there are 9x6 total values, 
the sum of these values from each case is 54.    “Sum” represents 
the sum of all 0 and 1 values for each bit position, and “Average” 
is simply Sum/Samples.  This Average is then rounded to find each 
bit in P’.   Uncertainty is the absolute value of the difference 
between the average and the rounded value.  Finally, Confidence is 
calculated as described above.  This same process is repeated for 
each of the other candidate shifts. 

 
Figure 3 . Recovery process example including the computations associated 
with evaluating candidate shift =1.  The candidate payload 01112 has a 
confidence of only 22% [ =1-(2/4)(.29+.46+.38+.43) ]. 

(3) The Candidate row-to-row offset D’ with the maximum 
Confidence is D’=2.  The corresponding Shifted Payload is then 
01102.  Since k=1, C=D=2. 

(4) The Standard Phase of 01102 is S=00112.    
(5) Circularly Right Shifting 00112 by C=2 correctly delivers 

the Payload P=11002. 

Modification for Halftone Encoding/Recovery 
To use this form of circular coding, stegatone [1] encoding is 

modified so that every cell is treated like a 1-bit carrier and 
payload bits are allocated accordingly.  Stegatones are clustered-
dot halftones meaning that at most only half of the cells can 
successfully carry data.  This constraint is due to the fact that in 
any highlight region half of the cells are completely white and in 
any shadow region half of the cells are completely black; solid 

Shift Mod B 
                      

0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
2 2 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
4 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
6 2 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
8 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

10 2 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
12 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
14 2 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
16 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
18 2 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
20 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

 B3 b2 b1 b0  Data with b3 highlighted 

Samples  14 13 13 14 0 1 1 0 0 1 1 0 0
Sum 4 7 8 8 1 0 0 1 1 0 0 1 1
Average 0.29 0.54 0.62 0.57 0 1 1 0 0 1 1 0 0
P’1 0 1 1 1 1 0 0 1 1 0 0 1 1
Uncertainty 0.29 0.46 0.38 0.43 0 1 1 0 0 1 1 0 0

1 0 0 1 1 0 0 1 1
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black and white cells are incapable of shifting or carrying data.  
Thus, at least half of the cells will be interpreted as “abstentions” 
in the recovery process.   

Figure 4 illustrates a zoomed and cropped region of an image 
halftoned for stegatone encoding.  The 23x23 cells shown span a 
region of shadow (left) and highlight (right). The red dots indentify 
the shadow cell checkerboard; while their positions can be data 
bearing in the shadow region they are void of data in the highlight 
region because they are all white. 

 

 
Figure 4.  Zoomed halftone image with shadow cells indicated by red dots. 

A key issue to be addressed is that the captured crop will very 
often be an entirely shadow or an entirely highlight region.  In such 
regions, every cell on a checkerboard arrangement will be 
designated as an abstention.   

 
18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 63 62 61 60
59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37
36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14
13 12 11 10 9 8 7 6 5 4 3 2 1 0 63 62 61 60 59 58 57 56 55
54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9
8 7 6 5 4 3 2 1 0 63 62 61 60 59 58 57 56 55 54 53 52 51 50

49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4
3 2 1 0 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45

44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22
21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 63
62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40
39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 63 62 61 60 59 58
57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35
34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
11 10 9 8 7 6 5 4 3 2 1 0 63 62 61 60 59 58 57 56 55 54 53
52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30
-29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7
6 5 4 3 2 1 0 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

 
Figure 5. Bit positions indicated in a 23x23 capture of a B= 64 bit payload with 
offset D=41. 

Consider the example of a 23x23 crop of clustered-dot 
halftone cells shown in Figure 5; the numbers are bit positions with 
gray squares representing highlight cells and white squares 
representing shadow cells. In this example, with B=64 and D=41, 
half of the data bits would be unrecoverable in an area of all 
highlight or all shadow, as all even bit positions fall on highlight 
cells and all odd bit positions fall on shadow cells.  This behavior 
will occur whenever B is even and D is odd.   

As will be shown, this problem is avoided by setting k=2 such 
that D=2C will always be even for the case that B is even.  To 
continue the example, consider the 23x23 crop with B=65 and D=2 
in Figure 6.  Even if only highlight (gray) or shadow (white) cells 
are present, all 65 bit positions are represented. 

 
 

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35
59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37
61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41
0 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43
2 1 0 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45
4 3 2 1 0 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47
6 5 4 3 2 1 0 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
8 7 6 5 4 3 2 1 0 64 63 62 61 60 59 58 57 56 55 54 53 52 51

10 9 8 7 6 5 4 3 2 1 0 64 63 62 61 60 59 58 57 56 55 54 53
12 11 10 9 8 7 6 5 4 3 2 1 0 64 63 62 61 60 59 58 57 56 55
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 64 63 62 61 60 59 58 57
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 64 63 62 61 60 59
18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 64 63 62 61
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 64 63
22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4
28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10
34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

 
Figure 6. Bit positions indicated in an example 23x23 capture of a B= 65 bit 
payload with offset D=2. 

Analysis 
It is important to understand the complex interaction between 

quantities that are affected by crop window size, for all possible 
circular shifts and even or odd payload bit sizes, specifically to 
help design appropriate error correction coding strategies.  For a 
given crop window size, it is possible to exhaustively simulate all 
possible crop positions within a halftone checkerboard subsampled 
array of symbols.    Both the number of missing payload bits and 
the number of times payload bits are repeated can be computed. 

It is also necessary to test all possible circular shifts, C.  For a 
B-bit payload, there are B possible values C to shift codes to the 
standard form.  While all values of C are possible, it is also 
important to understand the achievable distributions of values.   
For the example of B=10, the graph on the left of Figure 7 shows a 
distribution of the 210 = 1024 codes with each value of C from 0 to 
9 (=B-1).  The data show that the distribution of numbers of codes 
is quite uniform; it ranges between 99 and 107 thus varying only 
about 8% from the mean.  The reason for the slight bias for smaller 
values of C is likely due to the fact that for codes where more than 
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one value of C will shift it to the standard form, the smaller value 
was recorded.  This non-uniformity is plotted for small values of B 
in the graph on the right of Figure 7, revealing that it becomes 
vanishingly small as B increases. Therefore all values of C carry 
approximately equal weight. 
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Figure 7. Uniformity testing of Circular Shifts C.  Distribution for B=10 (left), 
and Relative Non-uniformity as a function of B (right).  
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Figure 8. Worst case missed bits as function of crop window and circular shift, 
from an example where the number of payload bits is even, B=64.   Results 
for an all highlight or all shadow region (top), and half highlight, half shadow 
region (bottom). 

 
 

Counting Missing Bits 
In the example of Figure 5 it is shown that with the 

checkerboard subsampling of an all-highlight or all-shadow 
halftone area, with B=64 and D=41, half the bits are unrecoverable.  
For this value of B, all values of circular shifts C, from 0 to (B-
1)=63, are examined. In this example, k=1 and D=C.  Using the 
method of encoding described earlier, a message was encoded in a 
large array for each value of C; the array was decimated by 
checkerboard subsampling as would be the case for an all highlight 
or all shadow stegatone.   

As a first test, the array was cropped with square windows 
from sizes W=L=1 to 69.   For each fixed crop size, the crop 
window was repeatedly shifted in single cell steps across the array.  
For each shifted crop window, the number of missing bits was 
recorded.  The largest number of missing bits for the worst-case 
shifted crop was then plotted in the upper graph of Figure 8.  In 
this plot the miss count is color coded as indicated.  Note that the 
case of zero missing bits is color-coded with white. As expected, 
all odd values of C results in at least half of the bits missing.  
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Figure 9. Worst case missed bits as function of crop window and circular shift.  
The B=64 example of Figure 8 for a payload with an even number of bits, but 
forcing the offset to be even by setting k=2 so D=2C. Results for an all 
highlight or all shadow region (top), and half highlight, half shadow region 
(bottom). 
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On the lower graph in Figure 8 the experiment is repeated 
with one change:  instead of all highlight or all shadow halftone 
subsampling, the region examined is half highlight and half 
shadow.   For this underlying pattern the chronic missing bit 
problem for odd circular shifts was eliminated.   While this 
possibility is theoretically interesting, restricting crop windows to 
straddle highlight-shadow boundaries is not practical.  

Since the problem is with the odd offsets, the solution is to set 
the value of k=2 so D=2C, rendering the offset D even for all 
values of C.  The plots for missed bits using k=2 is shown in 
Figure 9.  As with Figure 8, the top plot shows the results for an all 
highlight or all shadow region and the bottom plot for a half 
highlight half shadow region.   Both cases are free of the chronic 
missing bit problem but do show the expected “compressed” 
pattern relative to the case in Figure 8. 

Figure 10 examines B=65, a case where the number of 
payload bits is odd.  As in the preview figures, the top plot shows 
the worst case missing bits results for an all highlight or all shadow 
region and the bottom plot for a half highlight half shadow region.   
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Figure 10. Worst case missed bits as function of crop window (W=L) and 
phase, C.  Example where the number of payload bits is odd, B=65.   Results 
for an all highlight or all shadow region (top), and half highlight, half shadow 
region (bottom). 

In both Figure 8 and 10, the worst case number of missing 
bits is B for a crop window size of 1, then for any given value of C 
the number decreases essentially linearly down to zero missed bits.  

 
Bit Repeat Count 

While it is important to know what combinations of crop 
window size and shift C will allow all bits to be represented at 
least one time after halftone checkerboard subsampling, it is 
equally important to know the number of times each payload bit is 
represented in that window.  The reason for this test is that in the 
presence of noise in the print and scan process, the accuracy of 
correctly recovering any single bit is not perfect, so redundancy is 
needed.  To this end, the repeat counts are also presented as a 
function of crop window size and circular shift.  

By way of example, consider the cropped window of Figure 
6.  Bit position 1 is repeated 6 times if the region is all shadow 
cells, and 5 times if the region is all highlight cells. Bit position 33 
only occurs once for each case, however.     The repeat count for 
all individual code bits over several shifted crop windows is shown 
in Table 1. 

Table 1.  
Repeats Code Bits Acc. Bits Acc. Rate

8 0 0 0% 
7 0 0 0% 
6 1267 1267 30% 
5 878 2145 51% 
4 520 2665 63% 
3 520 3185 75% 
2 520 3705 88% 
1 520 4225 100% 
0 0  -  - 

 
First, it is important to note that there are no code bits with 0 

repeats, that is, no missed bits.  The accumulated bits column 
indicates the number of code bits that have at least the number of 
repeats indicated, and the accumulated rate reflects the percent of 
code bits with at least that repeat count.  What is important for 
code recovery in some instances is not the average bit repeat count, 
but the minimum repeat count of some percentage of the all code 
bits.  The value 90% is used in this study.  The example of Figure 
6, where B=65, C=2, W=L=23, has a 90% repeat count of 1.   A 
reasonable 90% repeat count would be 4 or higher, so this crop 
window would not be acceptable. 

Figure 11 illustrates 90% repeat count values for two of the 
cases examined earlier for miss counts.  The results for B=65, k=1 
and B=64, k=2 are shown in the upper and lower graphs, 
respectively.  In both cases, the crops are in an entirely highlight or 
shadow halftone area. Note how the non-zero patterns are inverted 
from the miss count plots.  

Concluding Remarks 
A system was presented for encoding and decoding a cropped 

payload that survives checkerboard subsampling, and the effect 
crop window size has on payload bit misses and repeats was 
quantified.  For crop windows larger than B, it is clear that 90% 
repeat counts are very likely in situations where all bits are 
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recoverable.  For crop windows smaller than B, error correction 
coding schemes can be tailored to the statistics shown here to 
accommodate some level of missing bits.  The raw recovery rates 
for data encoded in clustered-dot halftone cells (stegatones) have 
been measured for a wide variety of printers and resolutions [4]. 

Another solution for small crop window sizes is to pad “1” 
bits to the raw payload to avoid C values with the highest miss 
counts.  For the case of odd values of B, where B=65 illustrated in 
this paper is but one example, the three most troublesome C values 
are C=0, 1, and (B-1).  Padding a 1 bit on the MSB side of the 
payload code eliminates C=0 form occurring.  Padding a second 1 
bit eliminates C=(B-1).  By padding a 1 bit on the LSB side of the 
code eliminates C=1 from occurring.  

The system presented here allows for blind recovery 
applications of steganographic halftones, as well as for other 
mechanisms for storing data in two dimensions.  Next steps will 
involve applying results of this study to improve robustness of 
recovery.   
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Figure 11. The 90% repeat counts for each bit in the payload as function of 
crop window and circular shift. The values indicate that 90% of the bits will be 
repeated at least that number of times.  Results are shown for an all highlight 
or all shadow region. B=65, k=1 (top), B=64, k=2 (bottom). 

 

Author Biography 
Robert Ulichney is a Distinguished Technologist with HP Labs. He 

received a Ph.D. from MIT in electrical engineering and computer science. 
Before joining HP he was with Digital Equipment Corp for several years 
then with Compaq’s Cambridge Research Lab where he led a number of 
research projects on image and video implementations for both hard copy 
and display products.  

References 
[1] R. Ulichney, M. Gaubatz, and S. Simske, “Encoding Information in 

Clustered-Dot Halftones”, IS&T NIP26 (26th Int. Conf. on Digital 
Printing Technologies), Austin, TX, 602-605, Sep 2010. 

[2] O. Bulan, G. Sharma, and V. Monga, "Orientation Modulation for 
Data Hiding in Clustered-Dot Halftone Prints," IEEE Transactions on 
Image Processing, vol. 19, no. 8, pp. 2070-2084, Aug 2010. 

[3] K. Solanki, U. Madhow, B. S. Manjanuath, S. Chandrasekaran and I. 
El-Khalil, “’Print and Scan’ Resilient Data Hiding in Images,” IEEE 
Transaction on Information Forensics and Security, vol. 1, pp. 464-
478, Dec 2006. 
[4] Y. Chen, R. Ulichney M. Gaubatz, S. Pollard, “Stegatone 
Performance Characterization”, Media Watermarking, Security, and 
Forensics 2013, IS&T/SPIE Electronic Imaging Symposium, San 
Francisco Airport, CA, 8665-27, Feb 3-7, 2013. 

NIP 29 and Digital Fabrication 2013 147




