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Abstract 

Drop formation and release, spreading and wetting of 
substrate, etc., are interfacial phenomena that are critical to the 
performance of many high-speed processes in digital printing and 
fabrication.  In these instances, dynamic surface tension (surface 
tension as a function of time) in the presence of a surfactant is 
more important in evaluating the performance of the process than 
its equilibrium surface tension.  It is known that temperature 
change can cause a change in the adsorption kinetics of ionic and 
nonionic surfactants at interfaces resulting in a change in 
equilibrium surface tension measured with temperatures [1-4].  We 
have recently reported [5] high-temperature measurements (up to 
200 °C) of surface tensions using optical imaging of the liquid/gas 
interface inside a tapered micropipette created within a 
comparable sized micro-capillary that was heated by coating an 
electrically conductive, transparent, tin-doped indium oxide (ITO) 
thin film.  This novel method is further used in the current study 
for: (i) determining high-temperature equilibrium surface tensions 
of a non-ionic surfactant, Span-80 in n-Hexadecane (up to 160 °C) 
and comparing the results with those of the pure liquids6 and; (ii) 
investigating the effects of this surfactant on the dependence of 
surface tensions on temperature and time when the equilibrium is 
perturbed by a rapid temperature-change.  The interesting aspect 
of the surfactant selection is that it is not normally surface active 
at the air/ n-hexadecane interface at room temperatures but is 
extremely surface active at high temperatures.  Results show that, 
as expected, surface tension decreases as temperature increases 
and vice-versa.  The values determined by optical measurements 
closely match the values obtained using theory of corresponding 
states.  Also, the time to attain equilibrium is very short (a fraction 
of a second) and there is hysteresis in dynamic surface tensions 
between the temperature increase and decrease cycles with the 
decrease cycle lagging behind the increase cycle.  Surfactant 
concentration is important in affecting dynamic surface tension but 
does not seem to play a significant role in the reduction of 
equilibrium surface tensions. 

1. Introduction  
We know that the time to equilibrium and therefore the 

dynamic surface tension varies at constant temperature [6-12]. 
However, in these experiments we are investigating how the 
dynamic surface tension varies as the temperature is increased or 
decreased rapidly between room temperature ~ 26 °C and 200 °C. 
In other words, we are investigating the temperature induced 
dynamic surface tension (both increasing and decreasing) and 
explore how surfactant concentration affects this process. 

For this system, results indicate that during the temperature 
increase or decrease cycle, the dynamic surface tension may not 
change in lock-step with the temperature, and we observe 
hysteresis. Our video set up with the micro-capillary system makes 
it uniquely possible to achieve both high-temperature and high-
speed measurement [13] of dynamic surface tension. The custom 
made thermocouple used in these studies has a sensitivity response 
time to the environment temperature of 0.05 s when exposed to air 
and 0.002 s in contact with water. 

2. Experimental 

2.1 Materials 
Fast response thermocouple is custom made of purchased 

unsheathed fine gage microtemp thermocouples (0.001 inches 
diameter, CHAL-001, Omega, USA) and round boro 
microcapillary (0.05 inches I.D. × 0.08 inches O.D., CV0508, 
Fiber Optic Center, USA). Span 80 and n-hexadecane (99%) were 
purchased from Sigma–Aldrich (St. Louis, Missouri, USA). 

2.2 Equilibrium surface tension measurements 
Based on the technique discussed in our previous paper [5], 

we conducted a series of experiments to measure the equilibrium 
surface tensions of Span 80 in n-Hexadecane solutions with five 
different concentrations, 10-6 M, 10-5 M, 10-4 M, 10-3 M, and 10-2 
M from room temperatures up to 160 °C with three repeats for 
each concentration.  

In previous experiments for measuring pure n-hexadecane 
(boiling point 287 °C), the upper temperature limit was chosen as 
200 °C.  At such high temperature, pure n-hexadecane becomes too 
volatile and makes the water/air interface in the capillary system 
unstable i.e., when heated longer than one minute, the vapors 
condense on the wall of pipette and the liquid flows back to the 
interface disturbing it. In this study, the presence of Span 80 
surfactant, which has a boiling point of only a little above 100 °C, 
contributes to a decrease of the boiling point of the surfactant/ n-
hexadecane solution compared to that of pure n-hexadecane; 
therefore the solutions become very volatile at a much lower 
temperature of 160 °C. Therefore, the highest temperature 
achieved in the equilibrium studies was limited to 160 °C. The 
dynamic studies could still go on to 200 °C as the experiments are 
completed in seconds before vapor effects cause instabilities. The 
average results of three repeats of equilibrium tensions for each 
concentration are listed in Table 1. 

According to the theory of corresponding states, the 
magnitude of γ changes almost linearly with temperature within a 
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averages of the three calculated and measured surface tensions for 
each concentration from Figure 1 by linear interpolation.  It is 
important to note that since all three (repeat) experiments at each 
concentration are not completed at an exactly same length of time, 
it is necessary to extend each interpolation to the same length of 
time. To do this, we chose the longest time among all the data 

(calculated and measured) at each concentration since surface 
tensions for the two other repeats would have reached the 
equilibrium and both the system temperature and surface tension 
do not change during the extended time. Thus, at each 
concentration in Figure 1 we get two averages, measured and 
calculated.  All ten averages are shown together in Figure 2. 

 
Figure 1 Dynamic surface tensions of Span 80 in n-Hexadecane solutions with 10-6 M, 10-5 M, 10-4 M, 10-3 M, and 10-2 M in the temperature-increase cycle. 
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Figure 2 Average plots of measured and calculated data of Experiments 1-3 at various concentrations. 

 
From these graphs, it is seen that the dynamic surface tension 

can decrease to almost 16mN/m (at measured temperature close to 
200 °C) quickly (within 5 s) and then approaches equilibrium. 
Also, from Figure 2, it is seen that the dynamic surface tensions do 
not show any dependence on Span-80 concentration. In this time 
scale (several seconds), despite the extremely fast rate of increase 
in temperature, there is also a synchronized decrease of surface 
tension to the changing temperature.  

2.4 Temperature decrease induced dynamic 
surface tension measurements 

The same set up was used in experiments with decreasing 
temperature as well. The dynamic surface tension is determined 
when the applied voltage to heat the micro-capillary is shut-off and 
the temperature decreases from 200 °C back to 26 °C (room 
temperature) quickly due to natural convection heat transfer to the 
environment. The temperature decrease has an initial rate of 
100~130 °C/s and then approaches to 26 °C within only about 30s 
in total. 

The following graphs, Figure 3 and Figure 4, show the 
dynamic data obtained for the systems studied and they are shown 
in the same sequence as in the above section. 

The curves in Figure 3 show that the increase in calculated 
surface tension (but not the measured surface tension) with time 
due to decreasing temperature has much better reproducibility. 

That is, as seen from all the plots of temperature decreasing 
experiments, the repeats of temperature converted surface tension 
profiles (dashed lines) in each figure are almost overlapping and 
thus have much better reproducibility than increasing temperature 
experiments. This enables us to make more clear comparison of the 
dashed lines and solid lines. In general, the increase in surface 
tension due to a temperature decrease lags behind when compared 
with the surface tension decrease in the increasing temperature 
cycle.  

For the higher concentration solutions, 10-2 M and 10-3 M the 
optically measured and calculated plots are the closest.  The 10-3 M 
solution reaches the final equilibrium within 10 s and almost at the 
same time as system temperature cools down back to room 
temperature, while the 10-2 M solution took about 5 s.  In terms of 
the intermediate concentrations, 10-4 M and 10-5 M, have the 
largest differences with significant variation. Although in 
Experiment 3 for 10-5 M and Experiment 2 for 10-4 M, the optically 
determined surface tensions profiles are close to the calculated 
profiles (from temperature), there is still a lot of variation.  The 
higher concentrations exhibit a closer match. In other experiments, 
especially Experiment 1, 2 for 10-5 M and Experiment 3 for 10-4 M 
the surface tension lags behind significantly and it took total of 
about 20 s to reach equilibrium. For the lowest concentration, 10-6 
M, the behavior was in between.  

 

NIP 29 and Digital Fabrication 2013 401



 
Figure 3 Dynamic surface tensions of Span 80 in n-Hexadecane solutions a 10-6 M, 10-5 M, 10-4 M, 10-3 M, and 10-2 M in the temperature-decrease cycle. 
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Figure 4 Average plots measured and calculated data of Experiments 1-3 at various concentrations. 

In Figure 4, as before, all curves are averages of their 
corresponding plots of three repeats in Figure 3. Interestingly, 
these results are very different from the temperature increase 
induced dynamic surface tension experiments of Figure 2, in that 
the measured dynamic surface tension increases slower than 
calculated and thus slower than (lags behind) its corresponding 
temperature decrease.  

3.0 Conclusions 
These studies have demonstrated the capability of measuring 

high temperature induced dynamic surface tension with the 
resistive heating approach described in our previous work [5].  The 
technique was applied to study Span 80 in n-hexadecane system 
with five different concentrations. The rapid temperature-increase 
cycle induced a dynamic surface tension decrease as the system 
was heated to 200 °C from room temperature (26 °C) within a total 
time span of only 10 s while the rapid temperature-decrease cycle 
induced dynamic surface tension experiments started at 200 °C and 
had an initial temperature drop of 100~130 °C/s and then 
approached 26 °C at a slower rate (within about 30s in total).  In 
temperature-increase experiments, all solutions have very fast 
response to temperature change and reach equilibrium within 
around 5 s. In temperature-decrease experiments, we found 
different dynamic surface tension behavior for the five surfactant 
concentrations. At high concentrations of 10-2 M and 10-3 M, the 

dynamic surface tension responses are the fastest, the lowest 
concentration 10-6 M has an intermediate response speed, and the 
10-4 M and 10-5 M solutions have the slowest increase in surface 
tension.  In general, the measured dynamic surface tension 
increases slower than calculated and thus slower than (lags behind) 
its corresponding temperature decrease.  
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