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Abstract 

Both capacitors and resistors are widely used passive 
components. Considering micro hybrid circuits printing of both 
devices is required. Striving for space-saving layouts, multi-layer 
capacitors are requested. Additionally, vertical integration of 
devices is desirable.  However, today’s screen printing technology 
cannot be applied to uneven surfaces, limiting the aspect ratio and 
the ability of vertical integration. Thus, usually SMD capacitors 
are preferred. In order to increase the degree of vertical 
integration, resistors are printed on top of printed capacitors, 
creating RC-circuits. The mask-less inkjet printing allows for 
realization of such structures. To keep the process simple, no in-
between-sintering is applied; the entire component is co-fired in 
one final step. 

To model the electric behavior of the RC-circuits, both the 
capacitors’ and resistors’ behavior is compared to non-integrated 
devices of the same size and shape. Based on these results, it is 
shown how existing single-device models can be applied to 
integrated devices.  

To improve the sintering process, furthermore the impact of 
heat on the behavior of the used organic additives is examined. 
The solid additives have to burn thoroughly. It is analyzed whether 
there is a liquid phase during sintering and how this may affect the 
resulting structure.  

State of Research 
The printing of thickfilm capacitors using inkjet has come a 

long way from first feasibility studies [1] to in-depth analysis of 
their production and electrical behavior [2]. The latest research 
concerns in-situ blending of inks to adjust resistivity [3, 4]. In 
parallel, other passive components as capacitors and inductors have 
been implemented [5], with the latest research concerning 
capacitors due to their higher importance. It has been shown, that 
vertical integration of capacitors is possible and that they can be 
sintered in a single step [6]. However, up to now inkjet print the 
different types of passive devices has been examined separately. A 
combination of different devices has not been considered yet.  

Motivation 
In electronics, the big trend of the last decades is the ever 

decreasing size of components. But while the shrinkage of 
information carrying structures is only limited by manufacturing 
technology, devices for power applications cannot shrink below 
their physical limits that are determined by conductor resistivity 
and heat dissipation. Therefore, in power applications thick film 
passives printed with inkjet technology can be a viable option.  

Another big trend in industry is the trend of mass 
customization. Currently power components are mass produced 
using standardized modules. Since inkjet printing is compatible 
with all generic levels of mass customization, it creates new 
possibilities of flexible mass production. To incorporate the 

process inherent flexibility, common architectures for potential 
product families have to be developed [7].  

A first step into this direction is to evaluate the feasibility of 
printing a simple RC-circuit that can be varied in both capacity and 
resistivity while not changing the substrate area used or the 
geometry of the galvanic interfaces to possible components above 
and beneath the RC-circuit.  

Design 
For the heat dissipation needed for power applications, the 

structure is printed on Al2O3 substrates due to their high thermal 
conductivity. All contacts have to be on the upper respective lower 
face for real 3D-intergation. The horizontal dimensions have to be 
independent of the electric behavior.  

To achieve those requirements, the capacitor design of 
previous research [6] is used. Figure 1 shows how an added 
connective layer topped by the capacitor creates a three pole RC-
circuit, that can be used either as a high or low pass, depending on 
the way it is incorporated into larger circuits. The number of 
repetitions r shows how many copies of the shown structure are 
stacked vertically, thus setting the resistivity of resistors and the 
capacity of the capacitors.  

 

 
Figure 1: Principal design of the RC-component. 

Each layer in the picture is functional layer. Each functional 
layer is manufactured using a number nf of printed layers. This 
number is determined using the targeted amount of material per 
area µA, the drop mass mD, the solid substance content ϕ and the 
printing pitch α ݊f ൌ A݉Dߤ · ߶ ·  ଶ. (1)ߙ

Thus the software that creates the printing patterns calculates 
the number of printed layers according to the targeted amount of 
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material that is needed for a conductive electrode or an insulating 
dielectric using this process data. Each functional layer contains 
both, silver and BaTiO3, in the ratio needed to ensure a flat surface 
to print on next. The number of layers for the nonfunctional 
material nn is calculated using the bulk densities ρ and sinter 
shrinkage s of both the functional (index f) and the nonfunctional 
(index n) material ݊n ൌ ୬ߩ · ሺ1 െ ୤ߩnሻݏ · ሺ1 െ fሻݏ · ݉A,f݉D · ߶ ·  ଶ. (2)ߙ

Two general substrate layouts were used. The first substrate 
layout just contains single capacitors without resistors and is used 
to improve the manufacturing process towards low failure rates 
before producing RC-circuits. The second layout contains every 
combination of the elements shown in Figure 1. The combinations 
vary in the numbers of stacked capacitors (up to three) and parallel 
resistors (up to seven), resulting in 21 different RC-circuits.  

Printing System 
To print complex structures in a reproducible way it is 

necessary to keep the essential process parameters stable. Since the 
main parameter is the size and therefore the mass of a single 
created drop, all factors influencing the drop size have to be 
managed using closed loop control systems.  

Drop formation in inkjet systems is a function of a number of 
parameters [8] shown in Table 1. The parameters are classified 
whether they are functions of the print system or the ink.  

Although every physical parameter shows some temperature 
dependence, only viscosity shows big changes for relatively small 
changes in temperature. Therefore the implementation of closed 
loop temperature control is a key component for ink management 
[4, 6].  

Table 1: Parameters influencing drop formation and their 
dependencies. 
Parameter Function of 
Compressibility Ink 
Speed of Sound Ink 
Density Ink 
Viscosity Ink, Temperature 
Surface Tension Ink 
Static Pressure Process 

 
Controlling the static pressure is not just a necessary addition 

for creating reproducible states of the process system but also a 
requirement by the printhead used [9]. So both inlet and outlet of 
the printing system are equipped with pressure sensors. Each 
sensor is combined with a pump and a controller, so that inlet and 
outlet pressure can be controlled independently, creating a stable 
pressure gradient inside the printhead. 

Inks 
Due to the high density of silver particles the stability of silver 

inks is difficult to achieve. Silver inks used in previous research [6] 

containing 300 nm silver particles proved to be not stable enough 
to print the complex structures needed here.  

Therefore 50 nm silver is used. The smaller particles are very 
stable but lowering particle size by the same solid substance 
content decreases particle distance so that the particles start to 
interact. This results in a strong non-Newtonian behavior of the 
ink. This behavior can be made more Newtonian by decreasing 
solid substance content, as can be seen in Figure 2.  

The price for increased stability of the ink is a low solid 
substance content and an increased content of ethyl cellulosis 
needed to keep the viscosity of the ink at the 11.9 mPas required 
by the printhead manufacturer [9]. 

Figure 2: Dependency of the Newtonian behavior from the solid 
substance content. 

For the dieletric, the BaTiO3 ink of previous research was 
chosen [6].  

Process Stability 
A stable printing process is necessary to ensure that the 

targeted amount of material is applied by printing the calculated 
number of layers using eqs. (1) and (2). All the parameters of 
Table 1 have to be kept stable by both using closed loop controls 
and stable inks.  

Figure 3 shows the drop weight and the solid substance 
amount per drop for both materials used over a period of two days. 
The process parameters static influx/efflux pressure and 
temperature were kept inside a range of ±3 m bar respective ±0.2 K.  

As can be seen, the silver ink is extremely stable while the 
BaTiO3 ink tends to increase in solid substance content and 
therefore in drop weight. This is an indication for particle 
sedimentation inside the printhead, since the measurements were 
taken after a pause in printing.  
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Figure 13: Conductance and capacity for all sizes of capacitors. 

Resistors 
The conductance of the resistors is expected to increase 

linearly with the number of printed layers and therefore the height 
and amount of applied ink. This is the mathematically most 
convenient way to model resistor behavior ܩsq ൌ ݊G · ݄߂ ·  G (7)ߪ

with Gsq being the square conductance, nG the number of 
printed layers, Δh the height of one layer and σG the conductivity of 
the printed material.  

As can be seen in Figure 14 the regression fits the measured 
values as expected.  

Figure 14: Observed resistivity and regression model. 

Frequency Response 
To evaluate the frequency behavior of the RC-circuits, the 

frequency response is measured. For a range from 1 kHz to 1 MHz 
the serial impedance of the RC-circuit is measured. The results can 
be seen in Figure 15, which shows the frequency Response for two 
RC-circuits with a similar capacity but different resistances. As 
expected, for lower frequencies behavior is determined by the 
capacity and for higher frequencies by resistance value.  

 
Figure 15: Serial Impedance of different RC-Circuits. 

Summary and Outlook 
To print RC-circuits the printing process was improved by 

closed-loop control of the most important process parameters. 
Furthermore a new silver ink was used to increase process stability. 
Thus a very stable process was achieved.  

It could be shown that it is possible to manufacture RC-
circuits using the inkjet process and that no firing between the 
different steps of printing is necessary.  

Both capacitors and resistors behave as expected and in 
principle fit the models derived before.  

The failure rate of the RC-circuits is still too high, with the 
drying process and the temperature incompatibility of the silver 
and the organic additives identified as causes for crack formation.  
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