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Abstract
Digital imaging and signal processing technologies offer new 

methods for inkjet and photographic media engineers and manufac-
turers, and those responsible for product quality control, to classify 
and characterize printing materials surface textures using new and 
more quantitative methods.  This paper presents a collaborative proj-
ect to systematically and semi-automatically characterize the surface 
texture of inkjet media.  These methods have applications in prod-
uct design and speci cation, and in manufacturing quality control.

Surface texture is a critical feature in the manufacture, mar-
keting and use of inkjet papers, especially those used for ne art 
printing. Raking light reveals texture through a stark rendering of 
highlights and shadows. Though raking light photomicrographs ef-
fectively document surface features of inkjet paper, the sheer num-
ber and diversity of textures prohibits ef cient visual classi cation.
This work provides evidence that automatic, computer-based classi-

cation of texture documented with raking light photomicrographs is 
feasible by demonstrating an encouraging degree of success sorting 
a set of 120 photomicrographs made from diverse samples of inkjet 
paper and canvas available in the market from 2000 through 2011.

The samples used for this study were drawn from the Wil-
helm Analog and Digital Color Print Materials Reference Col-
lection.  Using this dataset, four university teams applied differ-
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ent image processing strategies for automatic feature extraction 
and degree of similarity quanti cation. ll four approaches were 
successful in detecting strong af nities among similarity group-
ings built into the dataset as well as identifying outliers. The cre-
ation and deployment of the algorithms was carried out by the 
teams without prior knowledge of the distributions of similarities 
and outliers. These results indicate that automatic classi cation
of inkjet paper based on texture photomicrographs is feasible. To 
encourage the development of additional classi cation schemes, 
the 120 inkjet sample “training” dataset used in this work is avail-
able to other academic researchers at www.PaperTextureID.org.
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Texture in Inkjet and Photographic Media
Texture is a de ning attribute of traditional photograph-

ic paper. Starting in the early 20th century, manufacturers ma-
nipulated texture to differentiate their papers and to satisfy the 
aesthetic and functional requirements of photographers. Espe-
cially prior to WWII, when black and white silver gelatin pa-
per was the dominant photographic medium, dozens of man-
ufacturers worldwide produced a wide array of surfaces.[1] 
Surfaces were proprietary to the different manufacturers and 
each was used across their multiple brands of paper with chang-
es, additions, and deletions occurring over a span of many years. 
Inkjet papers, especially those geared for the art market, show 
an even greater differentiation and diversity of surface texture.

 vital factor in the evaluation of paper surface, texture im-
pacts the visibility of ne detail and thus provides insight into 
the intent of the photographer and the envisioned purpose of a 
particular print. For example, prints made for reproduction or 
documentary functions tend to be better suited to smooth-sur-
face papers that render details with sharpness and clarity where-
as more impressionistic or expressive subjects, especially those 
depicting large unmodulated masses of shadows or highlights, 
are best suited for papers with rough, broadly open textures.[2]

 result of a careful and deliberate manufacturing pro-
cess, texture applied to inkjet paper is designed to be distinct 
and distinguishable by artists and discerning viewers. Giv-
en these attributes, an encyclopedic collection of surface tex-
tures could have forensic or art historical research value pro-
viding vital clues about a questioned print of unknown origin.

Previous work established the use of photomicrographs 
as a simple and effective means to gather texture data.[3-4] Fur-
ther, recent research into historic silver gelatin papers showed 
a high level of success sorting texture photomicrographs us-
ing algorithms developed independently by four university 
teams.[5] By applying these algorithms to inkjet papers, this 
work is based directly on the previous research into silver gel-
atin surfaces and provides a useful basis for comparing results. 

Texture Image Preparation
Sample inkjet papers and canvas dating from 2000 

to 2011 were selected from the Wilhelm Analog and Digi-
tal Color Print Materials Reference Collection, which in-
cludes a large number of inkjet papers and canvas.[6] To the 
extent possible, each sample was identi ed by manufacturer, 
brand, date, and manufacturer-assigned surface designation.

The texture images were acquired with a micro-
scope system assembled using an In nity 2-3 imager man-
ufactured by the umenera orporation tted with an Ed-
mund Optics VZM 200i lens, as shown in Figure 1.

The imager incorporates an Interline Sony ICX262 3.3 
megapixel color progressive scan CCD sensor producing images 
that incorporate 1536 x 2080, 3.45 m, square pixels. The imaged 
area on each sample measured 1.00 x 1.35 cm. Raking light photo-
micrographs were made using a xed point illumination source with 
a 3-inch ED line light manufactured by dvanced Illumination 
placed at a 25° raking angle to the surface of the photographic paper.

Each raking light photomicrograph generated a 16-bit 
TIFF. Typical samples are shown in Figure 2. The image cap-
ture technique is non-contact / non-destructive and there-
fore easily adapted for use on prints of high intrinsic value.

Collaborative Competition
s part of a materials-based characterization project of modernist 

silver gelatin photographs at the Museum of Modern rt MoM  in 
New York, raking light photomicrographs were made from each print 
from the Thomas Walther Collection to document surface texture. 
This work stimulated interest in developing an automated scheme to 
cluster like prints based on surface texture. n appeal was made to 
university teams with signal processing experience to initiate a col-
laborative competition to develop methods for sorting texture images.

Four university teams joined this project: 
 William . Sethares 

ndrew G. lein,
   Christopher Brown, nh oang Do, and Philip lausmeyer

 Patrice bry, St phane
affard, erwig Wendt St phane Roux, and Nelly Pustelnik 

 Nanne van Noord, Laurens van der 
    Maaten, and Eric Postma

Each team adopted a different approach to the development of 
the two standard parts of an automatic classi er: 1  feature vector 
extraction and 2  degree of similarity quanti cation. These strate-
gies stem from a broad variety of basic approaches to texture im-
age classi cation and are described in the following section.[ ]

Prototype algorithms were constructed by the four teams using 
a training set of 50 silver gelatin samples with some known texture 
matches. This preliminary work established that the orientation of 
the primary paper ber direction relative to the raking light had no 
signi cant impact on results. This nding does not exclude a pri-
ori that silver gelatin surfaces possess other forms of anisotropy.  
This initial work proved effective in providing a basis for sorting 
silver gelatin prints by surface texture.  Since inkjet surfaces were 
not included in this preliminary test and some surfaces appear to 
exhibit anisotropy based on ber direction, a natural expansion of 
the scope of this work, immediate interest was expressed in testing 
the applicability of the data collection method and sorting strat-
egies on other paper surfaces including inkjet paper and canvas.

To forward these goals, a dataset containing 120 raking light 
photomicrographs of inkjet papers with known metadata including 
manufacturer, brand, date, gloss, and texture classi cation, and of-
fering varying degrees of self-similarity was prepared the ppen-
dix lists all samples used in this study . The dataset delivered to the 
teams for testing was largely composed of nine groups of ten paper 
samples each. Within these groups, there were three similarity sub-
sets: 1  images made from the same sheet of paper, 2  images made 
from sheets taken from the same manufacturer package of paper 
and, 3  images from papers made to the same manufacturer speci-

cations over a period of time. The remaining thirty samples were 
picked without concern for texture similarity but instead were select-
ed to span the large range of textures associated with inkjet paper.  

Conventional wisdom suggests that any raking light photo-
micrograph taken from different spots on a single sheet of paper 
would appear nearly identical. Likewise, texture images from differ-
ent sheets of paper taken from the same manufacturer package also 
should show strong similarity. Furthermore, raking light images from 
papers manufactured to the same speci cations but made at different 
times should show strong similarity, but to a somewhat lesser degree. 
For the thirty remaining samples, selected to demonstrate diversity, 
some would appear similar to the group of ninety textures and some 
would appear to be unique. The challenge posed to the teams was 
to discover these similarity groupings and isolate unique textures by 
producing a system of texture af nities that described the entire set.
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The approaches taken by the four teams can be divided into 
two categories [8] based on the approach to feature definition: (1) 
non-semantic / Wisconsin and Tilburg and (2) multiscale / Lyon 
and WPI. The fundamental difference is that non-semantic features 
are derived directly from the image data where multiscale features 
are based on a structural model presupposed as relevant to the 
encountered data.

1. Eigentextures (Wisconsin) 
In the eigentexture approach, a collection of small patches are 

chosen from each photographic image. These patches are gathered 
into a large matrix and then simplified to retain only the most 
relevant eigendirections using a singular value decomposition 
(SVD).[9] The preparation stage consists of two steps:

1. For each imaged paper , randomly pick  pixel 
patches  for  (with 
and  in this case). Lexigraphically reorder the 
into column vectors .

2. Create matrices  consisting of the 
 column vectors and calculate the SVDs  for 

all . Extract the  columns of  corresponding to the 
 largest singular values and call this  (with 

selected as 15 in this case).
The  are the representatives of the classes and may be 

thought of as vectors pointing in the most-relevant directions. 
During the classification stage, a number of similarly-sized patches 
are drawn from the tested photographic paper. Each of these 
patches is compared to the representatives of the classes via a least 
squares (LS) procedure.

3. Select  (with  used here)  pixel patches 
 from the tested paper and reorder into vectors 

. Calculate the distance from the th patch to the 
th class:

    (1) 

Every patch is closest to one of the classes, and the number of 
patches closest to the th class is recorded.

4. For each patch ,  locates the 
smallest of the , indicating that class  is the best 
fit for patch . Tally the set of all such , .

The commonest entry among the  is the most likely class for this 
image. The second most common entry is the next most likely 
class for this image, etc.  

2. Random-feature texton method (Tilburg) 
This method combines random features and textons, i.e., the 

random-feature texton method. This method was developed by Liu 
and Fieguth [10] and is an adaptation of the texton approach [11] 
using random features. Textons are prototypical exemplar image 
patches capturing the “essence” of the texture of an image. 
Random-features (RF) are random projections of image patches 
with  pixels to vectors with  elements ( , ,

). More specifically, a random feature (RF) is defined as 
a  matrix, the elements of which are sampled from the 
standard multivariate normal distribution .

The application of the random-feature texton method on the 
120-sample dataset is conducted as follows. A set of  sub-images 
of  pixels is selected for each gray-value texture image in the 
120 sample dataset . The sub-images are defined to be 
the central regions of  pixels of which the intensity 
distributions are normalized to zero mean and unit variance. A 
sample of 45,000 randomly selected  ( ) patches 
(represented as vectors of length ) of the normalised sub-images 
are contrast-normalised and subsequently multiplied with RFs, 
yielding RF vectors of length .

Subsequently, a texton dictionary is created by applying k-
means clustering to all RF vectors of the  sub-images of each 
texture image of the 120-sample dataset. Each image of the dataset 
is transformed into a texture histogram by comparing all of its 
patches (represented as RF vectors) to the entries in the texton 
dictionary. Finally, the histograms are classified using a k-nearest 
neighbor algorithm using the  similarity measure.  

3. Anisotrpoic wavelet multiscale analysis (Lyon) 
This method relies on the use of the Hyperbolic Wavelet 

Transform (HWT) [12–13] which is a variation of the 2D-Discrete 
Wavelet Transform (2D-DWT).[14] The HWT explicitly takes into 
account the possible anisotropic nature of image textures. Indeed, 
instead of relying on a single dilation factor  used along both 
directions of the image (as is the case for the 2D-DWT), HWT 
relies on the use of two independent factors  and 
along directions  and  respectively. The Hyperbolic Wavelet 
coefficients of imaged paper , denoted as  are 
theoretically defined as: 

.   (2) 

From these HWT coefficients, structure functions, consisting 
of space averages at given scales , are defined as:

where  stands for the number of 
actually computed and not degraded by image border effects.  

To measure proximity between two images  and , a cepstral 
distance between their structure functions  and 

 is computed. It consists of a classical  norm 
computed on log-transformed normalized structure functions:

  with    (4) 
 .      (5) 

4. Pseudo-area-scale analysis (WPI) 
Area-scale analysis is a technique which has been applied to 

various problems in surface metrology.[15] Much as the measured 
length of a coastline depends on the scale of observation and 
therefore the resolvability of small features, the measured area of a 
surface is also a function of the scale of observation. The area-
scale approach uses fractal analysis to decompose a surface into a 
patchwork of triangles of a given size. As the size of the triangles 
is increased, smaller surface features become less resolvable and 
the ‘relative area’ of the surface decreases. The topological 
similarity of two surfaces is computed by comparing relative areas 
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Figure 3.

esults as A nit  Maps
From the metadata and each of the teams  automatic classi -

ers, the degree of similarity af nity  was tabulated for each pos-
sible pairing of images in the 120-sample dataset. These scores 
were then converted to a grey-scale with the darkest intensities 
indicating the greatest af nity and the lightest the least af nity.
To visualize these values a table containing 120 rows and 120 col-
umns was created, one row and column for each sample in the data 
set. Each of the resulting 14,400 cells in the table was shaded ac-
cording to the similarity of compared samples with black describ-
ing an exact match, white a total mismatch and gray-scale values 
in between describing a range of better or worse similarities. For 
example, the top diagram in Figure 3, shows predicted similarities 
within the sample group suggested by the metadata listed in the p-
pendix, including manufacturer, texture, brand, and date these af-

nities were prepared solely on the metadata and not on direct ex-
amination of the surfaces . s expected, the six dark blocks starting 
in the upper left and continuing down along the diagonal, show a 
high degree of af nity dark gray and black  as these blocks depict 
the groups derived from the same sheet or package. Lesser degrees 
of similarity are scattered throughout the gure with the 30 sam-
ples selected to show diversity poorer levels of similarity  falling 
in the lower right quadrant and along the right side and bottom edge. 

Gray-scale af nity maps produced to display the results from 
each of the four teams are also shown in Figure 3. The principal simi-
larity among the ve af nity maps in Figure 3 are the six dark squares 

at various scales. The technique has traditionally been employed 
on topographic data sets containing height information over a 
surface. Though lacking a direct measure, area-scale analysis can 
be applied to the photomicrographs using light intensity as a proxy 
for height.

The proposed approach proceeds in three steps: (1) 
preprocessing, (2) feature extraction, and (3) classification. The 
preprocessing step extracts a square  region from the center 
of the image (where  was chosen to be 1024), and normalizes the 
intensity of the resulting extracted image. The  grid of 
equally spaced points (representing pixel locations) is decomposed 
into a patchwork of

(6)

isosceles right triangles where  is a scale parameter representing 
the length of two legs of each triangle. The pixel values at each of 
the triangle vertices are then taken as the ‘pseudo-height’ of each 
of the vertices. The area of each triangle in 3-D space is then 
computed and the areas of all triangular regions are summed, 
resulting in the total relative area  at the chosen scale . To 
conduct feature extraction, the relative area for an image is 
computed over a range of scale values; in this study, 8 scale values 
were used ranging from 1 pixel to 34 pixels, which correspond to 
lengths of 6.51 m to 0.221 mm, respectively. Finally, to classify 
and compare the similarity of two images  and , a  distance 
measure  is computed via

(7)

where  is the relative area of image  at scale  and  is the 
set of chosen scale values. Small values of  indicate high 
similarity between images  and , while large values indicate low 
similarity.  
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along the upper left to lower right diagonal. Given the construction of 
the dataset, these blocks should be dark due to the similarity between 
the samples in these groups. The light stripes in the right and bottom 
quarters of the af nity maps, due to some relatively matchless tex-
tures among samples 1-120, are also shared by all ve af nity maps.

While small local differences among the ve maps indi-
cate that work remains to nd an ideal automated scheme, strik-
ing fundamental similarities between the metadata-based af nity
map and the four produced by automated schemes validate rak-
ing light photomicrographs as having suf cient texture infor-
mation to support the automated classi cation of inkjet paper.

Observations
s shown in Figure 3, there is a relatively high level of agree-

ment between the af nity pairings prepared by the classi cation algo-
rithms and those derived from metadata and subject-matter expertise. 

s discussed in the previous section, the principal correspondence 
among the ve af nity maps is the six dark squares along the diag-
onal running from upper left to lower right. Given the construction 
of the dataset, the samples in these blocks are very similar and these 
texture af nities were recognized both by a subjective metadata sort 
and by the four automated solutions. In addition, both “human” and 
automated solutions are sensitive to the increased levels of diversity 
within samples 61-90 that track a manufacturer’s surface over time. 

These ndings are reinforced by Figure 4, which shows a nor-
malization of the distances between each texture pairing within the 
tested groups. The shape of the curves are remarkably consistent 
with the automated solutions and the human metadata-based classi-

cation detecting very similar degrees of af nity across the groups. 
The chart con rms there is no measurable difference between texture 
images made from the same sheet of paper as compared to images 
made from different sheets from the same manufacturer package. 
Further, textures produced to same manufacturing standard over time 
show fair to good levels of similarity blocks , 8  9 . These results, 
though not a surprise given high levels of manufacturing regularity, 
are important for the possible development of future systems that 
rely on indices of known “exemplar” textures to identify unknowns. 

Compared with the 120 silver gelatin surfaces assessed in the 
previous study, the inkjet materials were found to be more diverse. 
Smooth inkjet papers were observed to be signi cantly more uniform 
as compared to smooth non-ferrotyped  silver gelatin papers. On 
the other end of the scale, the rougher inkjet canvas nishes showed 
signi cantly more dimensionality than any of the tested silver gela-
tin surfaces. nother difference is the relative lack of stronger af n-
ities within diagonal blocks , 8  9 in Figure 3. Silver gelatin pa-
pers showed higher levels of consistency in these groups of papers 
identi ed as having the same manufacturer speci cations over a 
period of time. side from these differences, the results for both the 
inkjet and silver gelatin surfaces are highly comparable especially 
for the generally good alignment between the human expert’s af n-
ity expectations and the measured af nities generated by the teams.

Conclusions and Next Steps
This project opens a path toward a machine vision system 

that provides meaningful results for the study of inkjet prints. To 
have meaning, an automated classi cation system cannot produce 
results simply based on an internal, self-referential “sameness/
difference” parameter but instead must render results that are 
relevant to trained practitioners, such as media manufacturers, 
conservators and curators. For example, the photomicrographs 

made from ten spots on the same sheet of paper, though total-
ly different images, need to be recognized as the “same.” Like-
wise the two other similarity groups made from different sheets 
from the same manufacturer’s package and from papers man-
ufactured to the same standard must be recognized as related.

 useful system needs to reliably cluster these groups to-
gether while at the same time be discriminating enough to set 
these groups apart from others made to different manufactur-
er speci cations. Using different techniques, each of the four 
teams met this standard. The fundamental outcome of this ex-
periment is the intuitive “human / expert observer” conception 
of a classi cation system based on sameness / difference can be 
replicated through imaging and signal processing techniques. 

The techniques described in this work could engender 
new modes of scholarship based on the discovery of materi-
als-based af nities. Work at the Museum of Modern rt is un-
derway to determine how these techniques might meaningfully 
be applied to silver gelatin prints in its Thomas Walther Collec-
tion. Moving forward, reference libraries of surface textures, 
containing papers grouped by photographer or paper manu-
facturer can be assembled and used as a basis of comparison.

This work has already begun through the assembly of 
large photographic and inkjet paper and canvas reference col-
lections categorized by manufacturer, brand, surface nish,
and date as well as for individual photographers and artists.

When used together with image and dot structure photo-
micrographs, spectral re ectance data in the UV, visible, and 
IR regions, gloss and DOI measurements, surface characteri-
zation is an important tool in the identi cation, dating, and au-
thentication of inkjet prints. With standardized imaging tech-
niques and a networked infrastructure, conservators and others 
could query such texture libraries to detect similar papers held 
by other collections, potentially characterizing and identifying 
works in their collection as well as revealing relationships with-
in an photographer’s body of work and between photographers. 

aving shown promise for both silver gelatin papers and ink-
jet, these methodologies are being applied to other media, in-
cluding the platinum papers of F. olland Day 1864-1933 .

 website, www.PaperTextureID.org, has been created to distrib-
ute the dataset of silver gelatin and inkjet textures used as the basis 
for this study. The availability of these image sets should encour-
age and assist other image processing and programming teams to 
develop their own automated classi cation and sorting schemes.
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Appendix: Inkjet Paper and Canvas Samples 
Used in the Dataset

The number is the sequential numbering system suggested by 
the teams following image processing. The papers are further iden-
ti ed by manufacturer, brand, manufacturer location and date date
generally refers to the acquisition date of papers . Other descrip-
tors, such as surface nish designations, are taken directly from the 
manufacturer packaging. ll samples were drawn from the Wilhelm 
Analog and Digital Color Print Materials Reference Collection.

1-10. Canon Platinum Pro, Smooth, Glossy: Japan, Purchased 4/2012
11-20. Ilford Gallerie Gold Fibre Silk, Smooth, Glossy: Germany, ~ 2009
21-30. ahnemuhle Fine rt William Turner, Textured, Matte: Germany,           
            ~2009

31-40. Epson Premium Luster Photo Paper roll , Smooth, Semi-Glossy:                                   
           Japan, Purchased 8/2002 
41-50. Epson Ultra Premium Photo Paper Luster Formerly called Epson
           Premium Photo Paper Luster , Smooth, Semi-Glossy: Japan, Pur 
           chased /2011
51-60. Epson Sample Roll Premium Luster Photo Paper, Smooth, Semi- 
           Glossy: Japan, ~ 2001

61. P Premium Plus Photo Paper, igh gloss, Smooth, Glossy: United
      States, 2006
62. P Premium Plus, Glossy Photo Paper, Smooth, Glossy: Switzerland,  
      2002
63. P Premium Plus Photo Paper, glossy, Smooth, Glossy: U , 2001
64. P Premium Plus Photo Paper, igh gloss, Smooth, Glossy: United
      States, 2005
65. P Premium Plus igh Gloss Photo Paper, Smooth, Glossy:
      Switzerland, 2004
66. P Premium Plus Photo Paper, igh gloss, Smooth, Glossy: 
      Switzerland, 2005
6 . P Premium Plus Photo Paper, igh gloss, Smooth, Glossy: 
      Switzerland, 2006
68. P Premium Plus Photo Paper, igh gloss, Smooth, Glossy: United
      States, 200
69. P Premium Plus Photo Paper, glossy, Smooth, Glossy: Switzerland,  
      2002
0. P Premium Plus Photo Paper, igh gloss, Smooth, Glossy: 

      Switzerland, 200
1. Epson Photo uality Glossy Film, Smooth, Glossy: Japan, ~ 1996
2. Epson Photo Paper Glossy, Smooth, Glossy: Germany, Purchased  

      02/2008
3. Epson Premium Photo Paper Glossy Formerly Premium Glossy Photo

      Paper , Smooth, Glossy: Japan, Purchased 03/29/2008
4. Epson Premium Photo Paper Glossy Formerly Premium Glossy Photo

      Paper , Smooth, Glossy: Japan, Purchased 03/08/2008
5. Epson Ultra Premium Glossy Photo Paper, Smooth, Glossy: Japan,  

      Purchased 03/200
6. Epson Ultra Premium Photo Paper Glossy Formerly Ultra Premium

      Glossy Photo Paper , Smooth, Glossy: Japan, Purchased 02/2008
. Epson Ultra Premium Glossy Photo Paper, Smooth, Glossy: Japan,  

      Purchased 02/200
8. Epson Photo Paper Glossy Formerly Glossy Photo Paper , Smooth,

      Glossy: Germany, Purchased 02/200
9. Epson Premium Glossy Photo Paper, Smooth, Glossy: Japan, Purchased  

      06/2004
81. odak Ultima Picture Paper, igh Gloss, Smooth, Glossy: Canada,
      Purchased 12/2003
82. odak Ultra Premium Photo Paper, igh Gloss, Smooth, Glossy: 
      Germany, Purchased 11/2011

83. odak Premium Photo Paper, Gloss, Smooth, Glossy: Germany, 
      Purchased 06/2011
84. odak Premium Picture Paper, igh Gloss, Smooth, Glossy: Canada,
      Purchased 12/2003
85. odak Photo Paper, Gloss, Smooth, Glossy: Germany, Purchased  
      03/2009
86. odak Ultima Picture Paper, igh Gloss, Smooth, Glossy: Canada, 
      ~ 2002
8 . odak Professional Inkjet Photo Paper, Smooth, Glossy: US ,
      Purchased /2004
88. odak Premium Picture Paper, igh Gloss, Smooth, Glossy: Canada,
      Purchased 04/2003
89. odak Ultima Picture Paper, Ultra Glossy, Smooth, Glossy: Canada/ 
      U , Purchased 03/2004
90. odak Premium Photo Paper, Gloss, Smooth, Glossy: Germany/US ,
      Purchased 03/200

91. Epson Ultra Premium Glossy Photo Paper, Smooth, Glossy: Japan, 
      ~ 2005
92. Epson Ultra Premium Presentation Paper, Smooth, Matte: Japan,  
      Purchased 4/200
93. Canon Fine rt Paper Premium Matte, Smooth, Matte: Japan, ~ 2006
94. Canon Photo Paper Pro II, Smooth, Glossy: Japan, Purchased 12/2008
95. Epson Sample Roll Premium Luster Photo Paper, Smooth, Semi- 
      Glossy: Japan, ~ 2001
96. Canson BF  Rives, Textured, Matte: France, Purchased 4/2008
9 . Canson Rag Photographique, Smooth, Matte: France, Purchased 4/2008
98. Canson Museum Canvas Water Resistant Matte, Canvas/Textured,  
      Matte: France, Purchased 4/2008
99. Canson Velin Museum Rag, Smooth, Matte: France, Purchased 4/2008
100. Canson rches quarelle Rag, Textured, Matte: France, Purchased  
      4/2008
101. Ilford Gallerie Gold Fibre Silk, Smooth, Glossy: Germany, ~ 2009
102. Epson Exhibition Fibre Paper, Smooth, Soft-Gloss: Japan, Purchased  
        11/1/200
103. Canson rtist Canvas Water Resistant Matte, Canvas, Matte: France,  
        Purchased 04/2008
104. Epson Water Color Paper-Radiant White, Textured, Matte: Japan, 
        ~ 2000
105. Canson rtist Canvas Professional Gloss, Canvas, Glossy: France,
        Purchased 04/2008
106. Canson Mi-Teintes, oneycomb, Matte: France, Purchased 04/2008
10 . Canson Edition Etching Rag, Smooth, Matte: France, Purchased
        04/2008
108. Canson Montval-Torchon, Textured, Matte: France, Purchased  
        03/2008
109. Epson Cold Press Bright, Cold-Press Textured, Matte: Italy, Purchased  
        08/2010
110. Epson ot Press Bright, ot-Press Smooth, Matte: Italy, Purchased  
        03/2011
111. Epson Cold Press Natural, Cold-Press Textured, Matte: Italy, 
        Purchased 8/2010
112. Epson ot Press Natural, ot-Press Smooth, Matte: Italy, Purchased  
        3/2011
113. Canon Photo Photo Paper Pro PR-101 , Smooth, Glossy: Japan, 
        ~ 2006
114. Canon Matte Photo Paper MP-101 , Smooth, Matte: Japan, ~ 200
115. Ilford Galerie Smooth Gloss, Smooth, Glossy: Switzerland, ~ 2009
116. P Premium Plus Photo Paper, igh Gloss, Smooth, Glossy:
        Switzerland, ~ 2005
11 . Epson ColorLife Photo Paper Semi Gloss, Smooth, Semi-Glossy:
        Switzerland, Purchased 2/2004
118. odak Ultima Picture Paper, Satin, Smooth, Glossy: Canada, ~ 2000
119. Epson Premier rt Matte Scrapbook Photo Paper, Smooth, Matte:  
        Japan, ~ 2003
120. ahnemuhle Fine rt William Turner, Textured, Matte: Germany, 
        ~ 2009
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