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Abstract
In the electrophotographic printing process, the deposition

of toner within the area of a given printer-addressable pixel is
strongly influenced by the values of its neighboring pixels in the
digital halftone image. This interaction between neighboring pix-
els is complex and nonlinear. To account for these effects, a
printer model can be embedded in the halftoning algorithm be-
fore the printing process. Models that are designed to predict the
effect of these factors on the printed halftone page can be used
to design halftoning processes that will yield higher print quality,
more consistently.

In our previous work, we developed a strategy to account
for the impact of a 5×5 neighborhood of pixels on the measured
value of a printer-addressable pixel at the center of that neigh-
borhood. We also examined the potential influence of a much
larger neighborhood of pixels (45×45) on the central printer-
addressable pixel. In the present paper, we improve the design
of the test page for 45×45 pixel models to yield more accurate
and more robust results with fewer pages. We create six different
models to more accurately account for local neighborhood effects
and the influence of a 45×45 neighborhood of pixels on the cen-
tral printer-addressable pixel. These models have a variety of
computational structures that allow system designers to choose
the model that is best-suited to their particular application. They
also offer varying degrees of accuracy. The model validation ex-
perimental results show that the best of these new models can
yield a significant improvement in the accuracy of the prediction
of the pixel values of the printed halftone image. With respect to
prediction of mean absorptance (cross-validation), we gain over
a 4× improvement in accuracy between the best of the six new
models and our previous 5×5 model.

Introduction
Digital halftoning is the process of representing a

continuous-tone image with a device that can render only two
or a few different levels of absorptance. It is well known that
the actual printed result may differ substantially from that which
might be expected based on a simple point-to-point correspon-
dance with the bitmap generated by the halftoning algorithm. The
nature and source of these differences will vary depending on the
marking technology – be it electrophotography or inkjet, and the
specific characteristics of the print mechanism. With electropho-
tography, the deposition of toner within the area of a given printer-
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addressable pixel is strongly influenced by not just the halftone
value at that pixel, but also by the halftone values of the imme-
diately neighboring pixels. This local influence can be attributed
to the fact that the spot size of the laser write beam is larger than
a single printer-addressable pixel; the complex field interactions
that are set up by the charge distribution on the photoconduc-
tor and in the toner in the gap between the photoconductor and
the developer, and how this influences development; the further
spreading of toner during the transfer and fusing processes; and
optical scattering of incident light within the media. Models that
are designed to predict the effect of these factors on the printed
halftone page can be used to design halftoning processes that will
yield higher print quality, more consistently.

The tabular equivalent grayscale model based on empirically
determined parameters was first proposed by Pappas and Dong
[1] in 1993. It has proven to be an effective means to deal with
non-ideal printer behaviors. Pappas and Dong determined the pa-
rameters of their model via a macroscale approach. They printed
specially designed halftone patches and measured the large-area
average absorptance of these patches. They then solved a set of
linear equations to determine the parameter values. Baqai and
Allebach [2] determined the parameters of their tabular equivalent
grayscale model via a microscale approach. For their 3×3 model,
they printed all 512 instances of the binary halftone pattern of this
size, and used fiducial marks to estimate the value of the center
printer-addressable pixel within this 3× 3 region. They then in-
corporated this model within the search-based direct binary search
(DBS) algorithm. This type of model has also been successfully
used to improve stochastic, dispersed-dot halftone image quality
for inkjet printers [3].

The tabular equivalent grayscale model was extended to ac-
count for the influence of a larger 5×5 neighborhood on the
printed absorptance of a given printer-addressable pixel with
stochastic, dispersed-dot [4], and stochastic, clustered-dot [5]
halftone textures. It was further extended [6] to account for the
influence of an even larger 45×45 neighborhood that is intended
to capture the effect of long-path scattering of light between the
point where it is incident on the surface of the printed media and
where it finally exits, known as the Yule-Nielsen effect [7]. More
recently, a similar model was proposed to predict toner usage with
dry toner laser EP printers [8]. We refer to all these models as
black-box models, since they are based solely on measuring what
is on the printed page, and do not incorporate any information
about the marking process itself.

The present work is most closely related to our previous
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work published in 2012 [6]. Here we improve the design of
the test page for the 45×45 models to yield more accurate and
more robust results with fewer pages. We describe six new mod-
els to more accurately account for local neighborhood effects and
the influence of a 45×45 neighborhood of pixels on the central
printer-addressable pixel. These new models are divided into
three classes, and have a variety of computational structures that
allow system designers to choose the model that is best-suited to
their particular application. They also offer varying degrees of
accuracy. Our target device in this paper is the HP Indigo Press
5000. However, the results should be broadly applicable to all
electrophotographic printers. The remainder of the paper is or-
ganized as follows: We first introduce the test page design and
the print-to-scan analysis procedure for new black-box models.
Then, we review the structure of our prior 5×5 model ULM5×5
(Unbiased, Linear Model 5×5)[4, 5], and discuss in detail each of
the six new models that we have developed. Next, we present ex-
perimental results for a selected set of these models. Finally, we
provide conclusions based on the work described in this paper,
and the results obtained with the seven models discussed herein.

Print-to-Scan Analysis for Black-Box Models
Throughout this article, we use [m,n] for discrete spatial

coordinates at the printer resolution and [k, l] for discrete spa-
tial coordinates at the scanner resolution. Their units are pixels.
The function g[m,n] denotes the discrete halftone image which
is input to the printer. The function s[k, l] denotes the scanned
printed halftone, g̃[m,n] denotes the printed halftone estimated
from s[k, l], and ĝ[m,n] denotes the printed halftone predicted
from g[m,n] using one of our models. For each pixel of g[m,n]
the absorptance value can only take on values of 0 (white) or 1
(black), while each pixel of s[k, l], g̃[m,n], andĝ[m,n] has an ab-
sorptance value between 0 and 1.

Figure 1 shows the major steps in the print-to-scan proce-
dure that we use to establish the relationship between the digital
halftone sent to the printer and the average absorptance of each
region corresponding to a single printer-addressable pixel in the
scanned printed page. We print a set of specially designed test
pages on an HP Indigo Press 5000 at a resolution of 812.8 dpi, and
scan the printed pages using an Epson Expression 10000 XL scan-
ner at a resolution of 2400 dpi. We then analyze these scanned
images to generate the parameters for the seven models that are
listed in Table 1. Figure 2 shows the single test page that can be

Figure 1. Print-to-scan analysis procedure for the black-box models.

used to directly estimate the parameters for Models-45×45 Class
2a - Class 3b in Table 1. We combine this single test page with
those [6] used to generate ULM5×5 to generate Models-45×45
Class 1a and Class 1b. This particular test page is based on ir-
regular, periodic clustered-dot halftone textures. It contains four

distinct 101× 101 pixel halftone patches corresponding to gray
levels 4/255, 12/255, ..., 252/255, each printed 50 times. Each
printer-addressable pixel within the 57× 57 pixel center region
has a surround of at least 45×45 pixels, and can be used to provide
absorptance information for the 45×45 black-box models. For
each of the 32 gray levels, there are 57× 57× 4× 50 = 649,800
such pixels on the test page. By printing 50 replications of each
digital halftone patch, we can characterize both the average be-
havior of the printer and the variation about that average due to
intrinsic printer instability.

(a) (b)

Figure 2. (a) Test page for the 45×45 models, (b) Portion of test page for

the 45×45 models. Each one of the four halftone squares in (b) corresponds

to one of the small squares in (a). The fiducial marks in (b) are used to

register the pixels in the scanned image of the printed test page to the pixels

in the digital image sent to the press. Their size is 3×3 printer-addressable

pixels.

Figure 3. Procedure for analysis of scanned printed test pages.

Figure 3 shows the major steps for the scanned test page
analysis, we first perform scanner gray balancing to calibrate the
scanned pages to units of absorptance. We then estimate the cen-
ter coordinates (here we use the centroid) for each fiducial mark.
The centroid of each fiducial mark is calculated based on the spa-
tial distribution of toner absorptance throughout its corresponding
mask region. The horizontal and vertical centroids of the i-th seg-
mented fiducial mark are given by Eq. (1).

Cx,i =
∑[k,l]∈Di

(k−0.5)s[k, l]

∑[k,l]∈Di
s[k, l]

,Cy,i =
∑[k,l]∈Di

(l −0.5)s[k, l]

∑[k,l]∈Di
s[k, l]

, (1)
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where Di is the corresponding binary mask for the i-th fiducial
mark in the binary mask image. The binary mask image is gen-
erated using the Otsu’s method [9]. The parameter s[k, l] is the
absorptance value of the scanned image at the pixel with co-
ordinates [k, l]. The 0.5 pixel offset in both parts of Eq. (1)
shifts the effective coordinate location of each pixel to its cen-
ter. For each 101 × 101 pixel halftone patch shown in Fig-

Figure 4. Sub-scanner-pixel estimation of the absorptance of each printer-

addressable pixel to account for misregistration between the printer and

scanner lattices and the non-integer ratio of their resolutions.

ure 2, we use the estimated centroid of the four adjoining fidu-
cial marks to estimate the location of the center of each printer-
addressable pixel in the scanned image, corresponding to one of
the 57×57 pixels in the inner region of the digital halftone image
that was sent to the printer. Let us consider the pixel at coor-
dinates [m,n] corresponding to the digital halftone value g[m,n].
Our target printer prints at 812.8 dpi; and we scan the images
at 2400 dpi; so this printer-addressable pixel corresponds to a
2400/812.8×2400/812.8 region in the scanned image, where the
units are scanner-addressable pixels. Since the center of this re-
gion will generally not be located at the center of a pixel in the
scanned image; and the ratio 2400/812.8 is not integer-valued,
we use a sub-scanner-pixel procedure to estimate the average ab-
sorptance g̃[m,n] corresponding to this printer-addressable pixel.
Let Ωm,n denote the set of 1/2400× 1/2400 inch2 scanner pix-
els s[k, l] that overlap either wholly or partially with this region.
In general, Ωm,n will contain 16 pixels, as shown in Figure 4.
We form the estimate g̃[m,n] as a weighted sum of the pixels in
Ωm,n, where the [k, l]-th weight ωm,n[k, l] is equal to the fractional
intersection of the region of the [k, l]-th scanner pixel with the
2400/812.8× 2400/812.8 region centered at the location of the
[m,n]-th printer-addressable pixel. This relationship is shown in
Eq. (2).

g̃[m,n] = ∑
[k,l]∈Ωm,n

ωm,n[k, l]s[k, l]. (2)

After obtaining the absorptance of all pixels of interest, we es-
timate the sample mean g̃ and sample standard deviation σ̃g of
the absorptance of each pixel of interest from the corresponding
scanned printed halftone patches. We then can introduce the dif-
ferent structures, which will be described in the next section to
model the influence of the neighborhood on the central pixel mean
and standard deviation of absorptance.

Black-Box Models
The equivalent grayscale image ĝ[m,n] summarize the effect

of an X ×X neighborhood of pixels in the digital halftone image

on the printed absorptance of each printer-addressable pixel [2].
The equivalent grayscale image is defined to have the same av-
erage absorptance on a pixel-by-pixel basis as the actual printed
halftone image. Under this assumption, we can express the dis-
crete equivalent grayscale image in terms of a model Ωmodel that
account for the influence of this X ×X neighborhood of pixels in
the digital halftone image as

ĝ[m,n] = Ωmodel{g[m+ k,n+ l],(k, l) ∈ [−K : K]2}, (3)

where (2K + 1) = X , and [−K : K]2 denotes the X2 point set of
2-tuples formed by the cartesian product of [−K : K]2 with itself,
and Ω denotes the transformation of the binary value to the equiv-
alent grayscale value of the center pixel. When K = 1, the printer
model should predict the central pixel absorptance using the 3×3
neighborhood [2]. When K = 2, the neighborhood to be consid-
ered is 5×5 [4]. When K = 22, the neighborhood to be considered
is 45×45 [6]. Figure 5 shows an example of how to use the printer
model (Model-3×3) to generate the equivalent grayscale image.

Figure 5. Example of using Model-3×3 to generate the equivalent grayscale

image.

With electrophotography, the developed toner mass at any
printer-addressable pixel in the image is a nonlinear function of
the halftone in the neighborhood of that pixel. The black-box
model is a tabular equivalent grayscale model based on the local
dot configuration. It can be embedded into the halftoning algo-
rithm for a more accurate result. For Model-3×3 [2], there are
512 (29) different 3×3 dot patterns. To ensure the full character-
ization of the printer for the 3×3 model, we designed test pages
that include all 512 different dot configurations. We printed and
scanned the test pages before doing any analysis; then analyzed
the scanned test pages to estimate the mean and standard deviation
of the central pixel absorptance for each 3×3 dot configuration.
Specifically, our estimation of the mean and standard deviation of
the central pixel absorptance for each 3×3 dot configuration were
given by the sample mean and sample standard deviation of the
corresponding scanned printed halftone patterns. We stored these
estimated values in a lookup table (LUT) as Model-3×3.

We have a similar approach for the Model-5×5 [4]. We first
used a 3×3 LUT to account for these interactions between dots
[2]. And later, we presented an efficient strategy to estimate the
impact of the 5×5 neighborhood pixels on the central pixel ab-
sorptance [4]. Instead of using all possible 5×5 dot profiles (225),
we use a set of 160 different 5×5 outer rings with all possible
3×3 inner neighborhood to build Model-5×5. We assumed that
dots in the outer ring of the 5×5 neighborhood have an additive
influence on the central pixel absorptance. We followed the same
LUT based approach as Model-3×3 to represent the influence of
the inner 3×3 neighborhood; and we summarized the influence of
the 5×5 outer ring by forming a weighted sum of these halftone
pixels.
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In our most recent paper [6], we described a 45×45 model:
For each fixed 3×3 dot configuration, we measure the influence of
the 45×45−5×5 outer neighborhood on the central pixel absorp-
tance by summing the additional weighted contribution of each
dot in the 5×5 ring and that of the 45×45−5×5 outer neighbor-
hood. In the current paper, we improve the design of the test page
for our 45×45 models to yield more accurate and more robust
results with fewer pages. We chose different gray level halftone
patterns as our dot configurations to collect the data for our 45×45
models. Using this strategy to choose dot configurations can keep
the inner 5×5 dot configuration and the outer 45×45−5×5 neigh-
borhood consistent.

In the current paper, we describe six new models that are
divided into three classes, as shown in Table 1. The new mod-
els offer a variety of improvements over the previous models in
terms of the number of free parameters, the number of test pages
needed to parameterize the model, the number of computations
required to predict each printed pixel value, and the model fit and
prediction errors that can be achieved with the model. Each one
of the six models has two different instantiations with identical
structure, but different parameters. One is used to predict the av-
erage absorptance value at each printer-addressable pixel in the
halftone image. The other is used to predict the standard devia-
tion of the absorptance at that pixel. This latter statistic is used to
characterize the stability with which a given local configuration
in the halftone image can be printed. It is an intrinsic feature in
the probabilistically-based direct binary search (DBS) algorithm
that leads to more stable halftone textures, and thereby reduced
grain and mottle [2, 3, 4, 5]. In addition, in this paper, we apply
our models to irregular, periodic clustered-dot halftones. To our
knowledge, this is the first time that a black-box model has been
developed for irregular, periodic clustered-dot halftones.

We summarize the equations for the 45×45 models in Table
1. We use λ ∗ to denote the overall prediction of the central pixel
absorptance for each specific black-box model, and use c∗g as the
constant weight term with gray level g. λ 5×5

i, j is the prediction
using model ULM5×5 described in [4] and [5]. In the second
step, we absorb the constant weight term within the weight vector
to make a neat equation, which is good for least squares regression
to determine the optimal weights.

Model-45×45 Class 1a and Class 1b are similar to the model
presented in [6]. We combine the Model-45×45 training data with
the ULM5×5. We assume that the dots in the 45×45−5×5 neigh-
borhood have an additive influence on the central pixel absorp-
tance, which is called correction weight term in this document.
We consider two different approaches for the correction weight
term. In the first approach, named Class 1a, the correction weight
term is just a constant contribution of the 45×45−5×5 neighbor-
hood depending on the gray level. In the second approach, named
Class 1b, the correction weight term is a sum of the weighted con-
tribution of inner 5×5 neighborhood and the constant contribution
of the 45×45−5×5 neighborhood depending on its gray level.

Model-45×45 Class 2a and Class 2b are two lower dimen-
sional models. We use only the measured absorptance values of
the Model-45×45 training page to build these two models. To
account for the influence of the inner 5×5 neighborhood on the
central pixel mean and standard deviation of estimated measured
absorptance, we optimize 25 weights for all the pixels within the
inner 5×5 neighborhood. The difference between these two mod-

Table 1: Computational structure of the black-box models.
Model Equation Neighbor-

hood size
1ULM5×5 λ 5×5

i, j = λi,0 + ψT
j w5×5

i + c5×5
i =

λi,0 +ΨT
j W 5×5

i

5×5

2M45×45
C1a

α1a
i, j,g = λ 5×5

i, j + c1a
g 45×45

2M45×45
C1b

α1b
i, j,g = λ 5×5

i, j + ψT
i, jw

1b
g + c1b

g =

λ 5×5
i, j +ΨT

i, jW
1b
g

45×45

3M45×45
C2a

α2a
i,g = ψT

i w2a + c2a
g = ΨT

i,gW 2a 45×45

3M45×45
C2b

α2b
i,g = ψT

i w2b
g + c2b

g = ΨT
i W 2b

g 45×45

4M45×45
C3a

λ 3a
i1 ,...,i4 ,g

=∑4
k=1 wk

ik
+c3a

g =ΨT
i,gW 3a 45×45

4M45×45
C3b

λ 3b
i1 ,...,i5 ,g

=∑5
k=1 wk

ik
+c3b

g =ΨT
i,gW 3b 45×45

1 Here λi,0 is the measured central pixel absorptance of the i-th 3×3 dot
configuration without the 5×5 ring, ψ j denotes the dot distribution in the
j-th 5×5 ring, and w5×5

i are the weights corresponding to the dots in the
5×5 ring.
2 Here i, j, and g are the indices of the 3×3 dot configuration, the 5×5
outer ring, and the gray level in the outer 45×45−5×5 neighborhood,
respectively. ψi, j states the dot distribution of the inner 5×5 dot config-
uration. We absorb the constant weight term within the weight vector by
augmenting ψi, j with a 1 to yield the vector Ψi, j .
3 Here i and g are the indices of the 5×5 inner dot configuration and the
gray level in the outer 45×45−5×5 neighborhood, respectively. ψi states
the dot distribution of the inner 5×5 dot configuration.
4 Here i1, i2, i3, i4,andi5 are the indices of the five different 3×3 neighbor-
hood located in the inner nerghborhood 5×5. Ψi,g is a (512×K+32)×1
vectors , where K = 4 (C3a), or 5 (C3b). The k-th block of 512 elements,
k = 1, ...,K contains a single 1 at the location indexed by ik, and 0s else-
where. Similarly, the final 32 locations contains a single 1 at the position
corresponding to index of the average gray level in the outer 45×45-5×5
neighborhood quantized to the 32 levels in the training page.

els is that for Class 2a, the 25 weights w2a are gray level indepen-
dent, while for Class 2b, the weights w2b

g are gray level dependent.

For Class 3a and Class 3b, we introduce a totally different
strategy to account for the influence of the inner 5×5 neighbor-
hood on the central pixel mean and standard deviation of the es-
timated measured absorptance, by summing the contributions of
four or five overlapping 3×3 neighborhoods, respectively, within
the 5×5 neighborhood of the pixel to be predicted. To make
these ideas a bit more concrete, as an example, we next describe
Models-45× 45 Class 3a and Class 3b in more detail. Figure 6
shows the structure of Model 45×45 Class 3a. This model sep-
arately looks at the binary halftone configuration within each of
four different overlapping 3×3 neighborhoods located in the in-
ner 5×5 neighborhood of the pixel whose value is to be predicted,
and the average gray level within the outer 45×45−5×5 neigh-
borhood to generate its predictions. From Figure 6, we may con-
clude that the model requires 6 table lookups, 2 multiplies, and 5
additions per pixel to predict either mean absorptance or the stan-
dard deviation of mean absorptance. This includes the computa-
tion required to perform the interpolation shown in the bottom left
corner of Figure 6. For Class 3b we add the inner 3×3 as the fifth
3×3 neighborhood, and use five different 3×3 neighborhoods to
better account for the influence of the inner 5×5 neighborhood on
the pixel whose value is to be predicted. Since we have 512 differ-
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Table 2: Summary of black-box model statistics.

Model Description No.
of
pages

No. of
param-
eters

Computa-
tion per
pixel∗

ULM5×5 LUT indexed accord-
ing to configuration of
binary halftone within
3×3 neighborhood +
16 weights for outer
ring + constant

6 9216 17 adds
16 muls

M45×45
C1a

ULM5×5 + gray-level-
dependent† constant

7 9248 ‡ 18 adds
16 muls

M45×45
C1b

ULM5×5 + 25 gray-
level-dependent
weights for inner 5×5
+ gray-level-dependent
constant

7 10048 43 adds
41 muls

M45×45
C2a

25 weights for inner
5×5 + gray-level-
dependent constant

1 57 25 adds
25 muls

M45×45
C2b

25 gray-level-
dependent weights
for inner 5×5 +
gray-level-dependent
constant

1 832 25 adds
25 muls

M45×45
C3a

4 overlapping 3×3
LUTs in inner 5×5
region + gray-level-
dependent constant

1 2080 4 adds

M45×45
C3b

5 overlapping 3×3
LUTs in inner 5×5
region + gray-level-
dependent constant

1 2592 5 adds

†For all models, estimation of gray level is based on the average value of
the digital halftone within 45×45−5×5 pixel outer region.
‡For all models with gray-level-dependent parameters, a separate param-
eter is used for each of the 256 gray levels.
∗Number of additions (adds) and number of multiplications (muls).

ent 3×3 dot configurations for each 3×3 neighborhood, we need
to optimize 512 × 4 weights for Class 3a, and 512 × 5 weights
for Class 3b. And we still have one constant offset term for each
gray level that we use in the training page to account for the influ-
ence of the outer 45×45−5×5 neighborhood on the center. The
optimal weights for all these models can be estimated from the
training data set by using a least squares method:

W optimal = argmin{ΨTW −α},

= (ΨT Ψ)−1ΨT α .
(4)

Table 2 summarizes the parameters, number of test pages, and
storage and computation required for each of the seven models
shown in Table 1, and discussed above.

Experiments and Results
We provide experimental results for training our models with

the irregular, periodic clustered-dot test page shown in Figure 2,
printed with an HP Indigo Press 5000. We also test our black-box
models with a different test page. This second page for model
testing includes a set of 31 gray patches with gray levels located
midway between those of the halftone patches that were used to
train the model. So this is effectively a cross-validation proce-
dure. We print and scan the test page. We then estimate the sam-

Figure 6. Structure of Model-45×45 Class 3a that is used to predict both ab-

sorptance and standard deviation at a given printer-addressable pixel. The

predicted value is the sum of five components. The first four components

wk
χk
,k = 1,2,3,4, are weights obtained from lookups into four different tables

indexed according to the binary halftone patterns in each of the four overlap-

ping 3×3 neighborhoods shown. Here χk is the index corresponding to the

3×3 binary neighborhood. The last component cg accounts for the contribu-

tion of the average gray value in the surrounding 45×45-5×5 neighborhood.

It is computed by interpolation between 32 values stored in a LUT, as shown

in the lower left. All the model parameters are trained using the test page

shown in Figure 2.

ple mean g̃ and sample standard deviation σ̃g of absorptance for
each pixel of interest in the second test page using the same pro-
cedure as we did for the first test page that was used to train the
models. We apply our black-box models to the digital testing page
and compute the predicted absorptance ĝ or standard deviation of
absorptance σ̂g for each pixel of interest in the test page. The
prediction error here is the root mean squared error between the
estimated measurement of absorptance g̃ or standard deviation σ̃g
and the prediction ĝ or σ̂g. It can state the predictive capability of
our black-box models.

Table 3 summarizes both the model-fit and cross-validation
predictor performance averaged over 31 gray levels. The model
fit error statistics are obtained by testing the predictors for mean
absorptance and standard deviation of absorptance on the same
data from the first test page that was used to train the models. The
prediction error statistics are obtained by training the predictors
on the first test page, and then testing them on data from the sec-
ond test page. We see that in all cases the error decreases mono-
tonically as we go from ULM5×5 to M45×45 C1b to M45×45
C3b. The model M45×45 C2a has the largest error since it has
the fewest parameters. Also, the cross-validation errors are gen-
erally larger than the model-fit errors, as would be expected. With
respect to prediction of mean absorptance (cross-validation), we
gain more than a 4× improvement in accuracy between ULM5×5
and Model-45×45 Class 3b.

Figure 7 shows an example of the cross-validation model
prediction images and prediction error images for mean absorp-
tance using different black-box models. The example irregular,
periodic clustered-dot halftone patch has an average gray level
96/255. The size of the image is 57×57 printer-addressable pix-
els. The prediction error images show the relative magnitude of
the errors between the prediction and the measurement by identi-
cally scaling all three error images according to the largest mag-
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Table 3: Model-fit and cross-validation prediction RMSE aver-
aged over 31 gray levels∗.

Mean Std. Dev.
Model-
fit (%)

Cross-
validation(%)

Model-
fit (%)

Cross-
validation(%)

ULM5×5 7.33 7.68 1.00 0.94
M45×45
C1a

3.77 4.17 0.91 0.89

M45×45
C1b

2.25 2.87 0.72 0.80

M45×45
C2a

5.06 4.77 1.52 1.31

M45×45
C2b

2.79 2.96 0.81 0.82

M45×45
C3a

1.83 2.17 0.70 0.70

M45×45
C3b

1.31 1.85 0.56 0.66

∗All errors are in units of percent of maximum absorptance between 0
(white) and 100 (black). The gray levels span the range between 0 and 1.

nitude of error observed across the three error images. In keeping
with the units of absorptance in which these images are shown,
darker pixels in the prediction error images mean higher error.
We can see from the prediction error images that ULM5×5 has
the highest prediction error, and M45×45 Class 3b has the min-
imum prediction error, which is consistent with the statistics in
Table 3 and the quality of the visual match between Figures 7(b)
and 7(e).

Figure 7. Cross-validation model prediction images and absolute value er-

ror images for mean absorptance. The example clustered-dot halftone has

an average gray level 96/255. (a) Digital halftone, (b) Estimated measure-

ment, (c) ULM5×5 prediction, (d) M45×45 Class 2a prediction, (e) M45×45

Class 3b prediction, (f) ULM5×5 prediction error image, (g) M45×45 Class

2a prediction error image, (h) M45×45 Class 3b prediction error image. The

three error images are computed by forming the absolute value of the error

at each pixel, and then identically scaling the images to map the maximum

across all three images to black and the minimum across all three images to

white.

Conclusions
In this paper, we improved the design of the test page for

our 45×45 models to yield more accurate and more robust results
with fewer pages. We describe six new models to more accu-

rately account for local neighborhood effects and the influence of
a 45×45 neighborhood of pixels on the central printer-addressable
pixel. These new models are divided into three classes, and have
a variety of computational structures that allow system designers
to choose the model that is best-suited to their particular applica-
tion. We applied our models to irregular, periodic clustered-dot
halftones. We evaluated all the new models with printed halftone
patches. The experimental results show that the extended models
can yield a significant improvement in the accuracy of the predic-
tion of the pixel values of the printed halftone image compared to
our previous Model-5×5. With respect to prediction of mean ab-
sorptance (cross-validation), we gain over a 4× improvement in
accuracy between the best new model (Model-45×45 Class 3b)
and our earliest 5×5 model ULM5×5.
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