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Abstract
With new functional applications emerging in the digital

printing industry, the need for quantitative knowledge of
the reliability of drop-on-demand inkjet printheads increases.
Continuous ink circulation using TF TechnologyTMand the
resulting channel self-recovery is one of the technologies which
decrease the down-time of a single nozzle, but in turn increase
the difficulty of an accurate reliability test. Current measuring
techniques, namely the a-posteriori verification of printouts on
paper proved to be inappropriate.

This paper proposes a novel software approach, exploiting
signal processing techniques, strong control loops and powerful
system design methodologies in order to allow for the correct
detection of single missing droplets at run-time. This new system
is meant to relieve the effects of the indefinite environment and
sources of human error. Preliminary results and the proof-of-
concept demonstrates both the system’s and the design method’s
versatility and potential.

Introduction
Drop-on-Demand inkjet printing [1] is a versatile technology

that can be used on most substrates and with a wide variety of
inks and dyes, based on water, solvent or oil. TF TechnologyTM

implies printheads with a continuous ink flow through channels,
that is able to remove the particles or air ingestions, enabling
self-recovery during printing. Both the high-throughput and
the management of picoliter-sized droplets make this technology
suitable for media printing as well as for functional printing.
Functional applications include printing of RFID antennas, solar
cells or micro array lenses. These features put high challenges on
the achievement of reliability tests.

In this contribution we optimize a recently developed system
which combines advanced optics with an efficient software
algorithm to capture droplets in-flight at full jetting frequency and
determine off-line the functional state of the printhead for every
droplet ejected. In this fashion the cumulative influence of ink
dynamics, cross-talk, nozzle plate flooding and the printed image
are condensed qualitatively into the statistics of missing droplets
over one full actuator. The used image segmentation algorithms
however, proved to be prone to image artifacts originating from,
for example, misfiring neighboring nozzles. Although sufficient
for detecting errors relevant to graphical applications, this system
is far from optimal in what concerns functional applications,
where detecting single-drop events may be crucial.

The functionality of the proposed component combines
digital signal processing with control loops in order to overcome
the two main factors that reduce its reliability: the work
environment hazards and the human errors.

The experimental setup
The experimental setup consists of two parts: the optical

rig and the analysis component. The former is a hardware setup
meant to capture images of droplets in-flight using a line scan
camera [2]. The latter is a software component that analyzes the
captured images and plots quantitative information that describes
the printhead’s functioning state. Initially, the analysis was meant
to be on-line, using a system with general purpose graphical
processing units (GPGPUs) [2]. Due to the software’s instability
however, it was off-loaded into an off-line version which employs
a desktop workstation [3]. The data processing is done a-
posteriori on images recorded at run-time.

The optical rig
The experimental hardware setup is shown in Figure 1. It

consists of four main parts: a light source (1), a printhead (2), an
ink catcher (3) and a line scan camera (4).

Figure 1. The optical rig

The light source emits parallel light that enables the released
droplets to cast high-contrast shadows upon the line scan camera.
The printhead (Xaar 1001, Xaar, UK) is printing a known pattern
which is used for comparison by the analysis process. The
ink catcher collects the ink ejected by the printhead. The line
scan camera (Pirahna 3, Dalsa, CAN) is a CCD one-dimensional
sensor array that catches droplet shadows and sends 140 MB/s of
data to the analysis component.

The software component
The software analysis is currently done in three steps: image

recording, tickmark detection, result plotting.
A sample from a recorded image is shown in Figure 2. It

depicts the droplet shadows printing a known pattern (the shape of
digit 4) in three cycle mode. The linear shapes represent droplet
shadows distributed in space (horizontal axis) depending on the
originating nozzle, and in time (vertical axis) corresponding to
the sample captured by the line scan camera.
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Figure 2. Zoomed image sample captured by the line scan camera,

showing digit 4

The tickmark detection step is done through a segmentation
algorithm which calculates the exact position of the areas of
interest (AOI) where the drops should be positioned, and then
applying a median filter [4] upon the AOI. A binarization process
detects the existence of droplets within their AOI, based on a user-
determined threshold, as seen in Figure 3. A series of undetected
droplets implies that the nozzle is malfunctioning and the event is
recorded as a tickmark.

The detection results are gathered and used in the third step
of the software analysis, where run-time information is plotted in
the form of quantitative statistics about the printhead’s reliability
status, as shown in Figure 4.

Challenges
Although the presented printhead reliability system is a

robust implementation that provides automatic analysis reports
far superior to the a-posteriori verification of printouts on
paper, there is a number of external factors that prevent it
from being fully reliable for validating printheads targeting
functional applications. Most of these unreliabilities originate
from ambiguous tickmarks that cannot be validated due to the
unstable capturing environment or due to human errors. The
following paragraphs will present the three main challenges
regarding tickmark analysis, which are treated in this paper.

Improper image capturing conditions are caused by
hardware or environment noise, or an improperly calibrated setup.
Two examples are shown in Figure 5. As can be seen, in such
conditions the user-set threshold becomes ineffective during the
binarization process, rendering an unreliable tickmark detection.

A high potential for human errors is determined by the
numerous parameters that need to be manually set up during
several iterative and inter-dependent steps. The two most common
situations are depicted in Figure 6 where the initial parameters
lead to improper binarization results or incorrectly calculated
AOIs.

Optical artifacts are unknown objects that obstruct the
camera’s line of sight and are the most common source of errors
in the present system. As can be seen in Figure 7, the captured
artifact is interpreted as a droplet where in fact the nozzle is
malfunctioning.

Other encountered problems include mechanical influences,
the improper detection of droplets with dynamic velocity, non-
constant background lighting, etc. The current system ignores
tickmarks smaller than 100 droplets since their existence is
ambiguous, and they are considered too small for the human eye
to recognize.

Figure 3. Zoomed superposition of initial image and binarization result.

Black = detected droplet shadow; White = undetected droplet shadow

(a) Total number of tickmarks (b) Tickmark occurence in time

Figure 4. Examples of result plots evaluated for each nozzle after total

occurrence (a) and occurrence in time (b)

(a) Insufficient contrast (b) Low signal-to-noise ratio

Figure 5. Examples of improper capturing conditions. Comparison between

the input images (top) and the binarization results (bottom)

(a) Incorrect threshold (b) Misalligned position parameters

Figure 6. Examples of human inflicted errors. Comparison between the

input images (top) and the binarization results (bottom)

(a) Input image (b) Binarization result

Figure 7. Examples of optical artifact

Optimization approaches
The current software system’s strong sequential implemen-

tation and its iterative work stages impede its translation into an
on-line solution for printhead reliability. Therefore we propose a
different design approach aimed at:

• boosting the throughput through a parallel design method-
ology aimed at implementing on heterogeneous hardware
architectures that contain massively parallel platforms;

• minimizing the rate of human errors through adaptive
calibration and control processes;
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Figure 8. The overall block diagram for the proposed printhead reliability system

• increasing the analysis reliability through image and signal
processing techniques targeting parallel platforms.

An overall block diagram of the cyber-physical system [5]
for reliability testing of inkjet printheads is presented in Figure 8.
The graphic depicts the interactions between an ”outside world”
(rig, interfaces) and the embedded system, which performs the
analyses. The latter can be in either an initial calibration state or
a run-time analysis state.

An initial calibration is performed every time the system
starts or decides to invalidate the analyses in case of extreme
environment changes. During this stage the hardware components
and the software parameters are adjusted through repeated control
loops.

The run-time analysis starts after the system is optimally
calibrated. Based on the parameters extracted in the previous
stage it assigns sections of the input image to different processing
resources to be refined in parallel. Afterwards it gathers the
results for interpretation and plotting. Each parallel resource is
represented in Figure 8 as a thread, which handles data originating
from one printhead nozzle. During the analysis process, the image
is transformed into a one-dimensional (1D) control signal, and is
subjected to a series of digital signal processing (DSP) algorithms
to extract useful information from the noisy images. At the
same time a process monitors all changes in the environment
and dynamically adapts the working parameters for each thread
accordingly.

The following sections will present three of the main
algorithms employed by the system depicted in Figure 8.

Nozzle Auto-Calibration
This algorithm is part of the initial calibration stage and its

purpose is to find the exact position of the individual printhead
nozzles and set their AOIs. To achieve this a series of black and
white stripes are printed and have to be detected by the software
component which is equally distributed to parallel computing
resources. The algorithm consists in the following steps:

1. Background sanity check is performed while the printer is
off, and verifies whether the capturing conditions are proper
for image analysis (the hardware is correctly set up and the
environment does not suffer extreme changes). The software
component is doing a vertical and a horizontal swipe of the
captured image applying Equation 1 to assure that the white
level stays within an accepted range, and acts accordingly.

|in[n]−‖in‖| < σin · kσ , (1)

where in[n] is the input sample, σ is the standard
deviation [6] and kσ is a deviation factor.

2. First stripe detection forces the software component
to identify the first white-to-black transition when the
printhead starts printing the first black stripe. Equation 2
is satisfied.

|sum−‖sum‖| > σsum · kσ , where sum =∑ in[n] (2)

3. Printhead width detection and coarse calibration identifies
the printed area in the input image and equally distributes it
to parallel threads as AOIs.

4. Break and second stripe detection implies that the printhed
stops printing and additional background information is
gathered for the newly allocated threads. The second line
detection employs a faster version of Equation 2.

5. Fine calibration is done while the printhead prints the
second stripe. Each thread accumulates a shadow density
and filters out the irregularities. The position parameters
align themselves according to these densities and the
neighboring nozzles. The method takes care of the
malfunctioning nozzles by analyzing the context and
predicting where they should be positioned.

This algorithm results in a set of optimal position parameters
that describe the AOI placement in the input image. It is followed
by other Auto-Calibration Algorithms such as the adjustment
of noise levels, drop per dot (DPD) levels, drop detection
parameters, etc.
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Figure 9. Block diagram for the drop detection filter

Figure 10. The working principle for the drop detection filter
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Figure 11. Block diagram for the correction mask calculation

Drop Detection
The drop detection is done through a set of DSP techniques

that are applied upon a 1D signal associated with each nozzle.
The main DSP algorithm is a drop detection filter which amplifies
droplet information while reducing the effects of noise, artifacts
or other anomalies. Its design is presented in Figure 9.

The filter inputs a stream of signal samples created from
the information belonging to one printhead nozzle, as shown in
Figures 12(a) and 12(b). It creates a vector (or window) of w
samples from the input stream as suggested by Figure 10, where
w is a configuration parameter. This vector is subjected to several
transformations.

The main DSP operation employed is the correlation [6].
The cross-correlation (Rin,h) between the input vector in and an
”ideal” window h determines the similarity of the input signal
with a desired signal originating from a perfect droplet image
(already binarized). Since according to Nyquist’s sampling
theorem [6], the input signal is regarded as noise, the auto-
correlation (Rin,in) would describe the input’s noise characteristic.
Therefore by subtracting it from Rin,h and normalizing the result
against it, we would have a correct description of the droplets’
behavior ( b). Since we are interested only in the peaks that
describe droplets, adjusting the resulting signal with an offset
equal to its power ( c) reduces the background noise level to
negligible values.

The filter outputs a stream of samples which is extracted
from the vector o as suggested in Figure 10. An example output
signal is shown in Figure 12(c).

Since the filter’s sensitivity determines the response time for
abrupt changes, vital information about the printing status can
be lost, as seen in Figure 12(c). Therefore, a set of correction
coefficients are applied upon the filter’s output signal. These

(a) (b) (c) (d)
in

(e)

Figure 12. Intermediate steps in the drop detection algorithm

Figure 13. The effect of different window sizes, assuming ideal environment

and no correction mask: input signal (top); w = 6 (middle); w = 90 (bottom)

coefficients are calculated using the algorithm in Figure 11, which
inputs the correlation window h and the printing pattern m. An
example can be seen in Figure 12, where the signal in 12(c) is
corrected with the coefficients in 12(d) and results in the output
signal in 12(e).

Designing the drop detection filter implies a trade-off which
has to be constantly monitored, as suggested in Figure 13.
Increasing the vector width w would result in a cleaner and
more stable output signal, but with a lower sensitivity and more
computing resource demands. On the other hand, a lower w
implies an unstable signal in hazardous environments, but a faster
response to changes and lower resource demands.

Image pre-filtering
In order to increase both the system’s reliability and

its performance, an additional block is provided during the
Pre-Processing stage: a small-footprint image filter. It is
applied upon the 2D image streams allocated for each nozzle,
before turning them into 1D signal data. The filter performs a

� =

Figure 14. The lightweight image pre-processing filter
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cross-correlation between a thread’s AOI and an ”ideal” droplet
image, as shown in Figure 14. Since most of the artifacts and
the environment effects are filtered out, the drop detection filter’s
input information will permit a lower w, while still maintaining a
high degree of reliability.

Results
The three algorithms presented in this contribution have been

individually tested using worst-case scenarios. The following
paragraphs will show a few test samples to demonstrate the
potential of these methods in particular and the printhead
reliability cyber-physical system as a whole.

Nozzle Auto-Calibration
Figures 15 and 16 present two scenarios to demonstrate the

usage of the nozzle auto-calibration algorithm. In both cases 32
nozzles were firing and captured in different areas of the input
image. While Figure 15 shows the algorithm’s functionality in
normal (ideal) capturing conditions, Figure 16 demonstrates its
robustness in imperfect environments.

Drop Detection
In order to demonstrate the robustness of the drop detection

algorithm, a set of worst-case examples have been selected and
are presented in this section.

In Figure 17 the result of an image originating from a
complete printhead actuator filtered with the drop detection
algorithm (17(c)) is compared against the input image (17(a)) and
the results of the previous segmentation algorithm (17(b)). The
input image is captured in a non-ideal environment displaying
numerous optical artifacts which are successfully excluded.

Figure 18 presents several similar examples, scaled to
observe individual events. It can be seen that the artifacts are
correctly filtered out and the algorithm gathers as much relevant
information as possible from the image context in order to rebuild
droplet information. Therefore the droplets’ existence is not
ambiguous anymore and one can be sure that a detected tickmark
is a real one. When analyzing the drop detection results, only lines

Figure 15. Example of AOI recognition in ideal conditions: input droplets

image (top); identified AOIs (bottom)

Figure 16. Example of AOI recognition in a bad contrast environment:

input droplets image (top); identified AOIs (bottom); areas with artificially

enhanced contrast (insets)

(a) Input image (b) Segmentation (c) Drop detection

Figure 17. Overall image of 500 nozzles printing a checkerboard pattern

(a) Artifacts over droplets

(b) Artifact over tickmarks and droplets

(c) Artifact over tickmarks and droplets

(d) Capturing conditions with insufficient contrast

Figure 18. Zoomed examples of droplet detection, without correction mask:

input image (left); segmentation results (middle); detection results (right)

Figure 19. Zoomed examples of droplet detection: input image (left);

without correction mask (middle); with correction mask (right)

which are completely black can be considered droplets, while
gray-scale elements are ignored by the decision blocks.

The effects of the filter’s sensitivity can be observed in
Figures 18(c) and 18(d), when abrupt transitions from black to
white or vice-versa occur. An example of signal correction using
edge coefficients is shown in Figure 19.

Image pre-filtering
An example of pre-processed image is shown in Figure 20.

As can be seen, the algorithm excludes most of the artifacts
and substantially increases the input signal’s quality. Therefore,
the filtering demands for the drop detection algorithm decrease,
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(a) Input image (b) Image after pre-processing

Figure 20. Example of image pre-processing

enabling it to be configured with light-footprint parameters. This
increases both its performance and sensitivity, making it able
to respond quickly to events in case of nozzle failure, with the
precision of one to five droplets.

Conclusions and future work
This contribution has presented an overview of a cyber-

physical system for real-time reliability testing of inkjet
printheads. It is an ongoing project meant to provide high-
productivity solutions for accurate examination in both graphical
and functional printing applications.

The current paper has been focused on three main
algorithms. Their analysis has shown promising results from
both a functional and a real-time performance point of view. The
nozzle auto-calibration algorithm proved to be a proper method
to overcome human errors and increase the testing productivity,
due to its adaptive profile based on cumulative environment
information. The drop detection set of algorithms has indicated
increased robustness in analyzing even the worst case scenarios,
since it reconstructs obstructed information from neighboring
events. Its shift of perspective from image segmentation to
digital signal processing enables high-performance computing
and further exploitation of the parallel paradigms. The image
pre-processing algorithm has shown the potential to overcome the
main drawback in the drop detection, namely the filter sensitivity,
by increasing the droplet image’s quality before it is transformed
into a signal. All analyses have manifested positive feedback as
long as there was a coherent pattern of droplets underneath the
environment hazards.

The current project is part of and serves as case study for a
larger-scale project – ForSyDe, a system design methodology [7].
In ForSyDe, systems are modeled and validated at a high level
of abstraction, and implemented on heterogeneous hardware
platforms employing massively parallel processors through
state-of-the-art techniques like design space exploration [8],
semantic-preserving transformations [7] or refinement-through-
replacement [9]. The purpose of ForSyDe is to provide the
designer with an intuitive framework for developing complex and
correct-by-design systems using abstract building blocks called
processes that communicate through signals.

Since this application implies analysis and manipulation
of data at a very high throughput in real time, a reliable
implementation is significantly difficult to achieve through
conventional paradigms. For this reason, as part of future
work the printhead reliability application will be fed into
ForSyDe design flow and mapped to massively parallel hardware
platforms (currently GPGPUs are targeted). Preliminary studies
and implementations of core functionality rendered positive

results [10].
Future work will include two tracks for research. The

first track is related to the continuous development of the inkjet
printheads reliability system by enhancing the algorithms and
implementing the missing blocks in Figure 8. The second track
involves implementing and optimizing an automatic design flow
for modeling and implementing cyber-physical systems. The
expected outcome of this project is to provide both an advanced
reliability testing application, and a design methodology with a
set of tools that will revolutionize system design paradigms and
notably reduce a product’s development cycle.
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