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Abstract

The electrophotographic (EP) process is widely used in
imaging systems such as laser printers and office copiers. In the
EP process, laser scanner jitter is a common artifact that mainly
appears along the scan direction due to the condition of polygon
facets. Prior studies have not focused on the periodic character-
istic of laser scanner jitter in terms of the modeling and analysis.
This paper addresses the periodic characteristic of laser scanner
Jjitter in the mathematical model. In the Fourier domain, we de-
rive an analytic expression for laser scanner jitter in general, and
extend the expression assuming a sinusoidal displacement. This
leads to a simple closed-form expression in terms of Bessel func-
tions of the first kind. We further examine the relationship between
the continuous-space halftone image and the periodic laser scan-
ner jitter. The simulation results show that our proposed math-
ematical model predicts the phenomenon of laser scanner jitter
effectively, when compared to the characterization using a test
pattern, which consists of a flat field with 25% dot coverage.

Introduction

The electrophotographic (EP) process is widely used in
imaging systems, such as laser printers and office copiers. In the
EP process, the overall print quality is determined by the stability
of the imaging process. Different mechanical issues contribute to
various image artifacts such as fine-pitch banding and laser scan-
ner jitter. Fine-pitch banding is analogous to laser scanner jit-
ter. The only difference being in the direction in which it occurs:
fine-pitch banding is due to fluctuations in the process direction,
and laser scanner jitter is due to fluctuations in the scan direction.
Fine-pitch banding has been widely studied [2, 3, 4]. However,
little work has been done on laser scanner jitter in terms of a char-
acterization and analysis that exploits its periodic nature.

A few studies on laser scanner jitter have focused on its root
cause [5], ways to reduce it [6], and its characterization [7, 8].
Horikawa et al [5] demonstrated that laser scanner jitter has two
typical root causes: rotational variation of the spindle motor and
the condition of the facets of the polygon mirror. The first cause is
directly related to the rotation speed of the polygon mirror. There-
fore, the non-regular variation of the spindle motor influences the
low-frequency jitter components in the frequency domain. On the
other hand, the condition of the facets of the polygon mirror in-
troduces high-frequency jitter components [5]. Horikawa et al.
demonstrated that the high-frequency jitter components were es-
sentially caused by the radius variation of the mirror facets and the
curve of the mirror facets [5]. To reduce the effect of laser scanner
jitter, Stutz presented a pixel placement correction system, which
contains an encoder or clock track to examine the position of the
scanner [6].
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As for the characterization aspect, Eid et al [7, 8] proposed a
characterization method that combined two-dimensional analysis
of Gabor pre-filtering to detect and localize the artifacts, and spec-
tral analysis. However, the root cause in [7, 8] is due to oscillatory
disturbances of the OPC drum and developer roller. This is dif-
ferent from the causes of the jitter examined in the papers [5, 6].
Most importantly, Eid et al [7, 8] did not investigate the periodic
characteristic of laser scanner jitter in their analysis.

In this paper, we focus on laser scanner jitter that is peri-
odic, since the jitter we consider is introduced by the condition
of the polygon mirror facets, as discussed in [5, 6]. We present a
new method for characterizing the Fourier spectrum of the peri-
odic laser scanner jitter. We view the image as a two-dimensional
signal, which has a periodic displacement in the scan direction,
and derive an analytic expression for its Fourier spectrum. The
laser scanner jitter phenomenon and its periodic characteristic are
illustrated in Fig. 1. In Fig. 1, straight lines are printed along the
process direction. However, they appear to be wiggly lines instead
of straight lines; and we can clearly see the periodic characteristic
of the laser scanner jitter. The length of each straight line is 100
printer-addressable pixels or printer scan lines; and the periodic
pattern repeats every 10 pixels because the polygon mirror in our
target laser printer has 10 facets. Guided by the periodicity of
the jitter pattern, we incorporate this characteristic into our math-
ematical model to more accurately capture the behavior of laser
scanner jitter.

In this paper, we mainly focus on characterizing the behavior
of the laser scanner jitter, and do not provide a solution to reduc-
ing the impact of the jitter in the EP process. The rest of this paper
is organized as follows. The next section describes the mathemati-
cal model of laser scanner jitter, and then extends the model to the
special case where the periodic displacement is a sinusoidal func-
tion. Then, we investigate in the Fourier domain the relationship
between the halftone image and the periodic laser scanner jitter.
Finally, we present an evaluation of the mathematical model and
conclusions.

Mathematical Model of Laser Scanner Jitter

We first develop the general mathematical model of peri-
odic laser scanner jitter in a two-dimensional continuous-space
for a continuous-tone image, and extend it to the special case
of a sinusoidal displacement in the next section. We denote the
continuous-tone image by f(x,y). Here x corresponds to the pro-
cess (vertical) direction, and y corresponds to the scan (horizon-
tal) direction. We define a new image g(x,y), with periodic laser
scanner jitter, according to

= f(x,y—d(x)), €))

where the displacement d(x) is periodic in x. Let F(u,v) de-
note the two-dimensional Continuous-Space Fourier Transform

g(x,y)
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Figure 1. Straight lines printed in the process direction appear to be wiggly
instead of straight. The length of each straight line is 100 printer-addressable
pixels, and the periodic pattern repeats every 10 pixels because the polygon
mirror in our target laser printer has 10 facets. The printer resolution is 600
api.
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Based on the properties of the CSFT, we can derive a closed-
form expression for G(u,v) in terms of F(u,v). We have

G(u,v) ZCk F(u—k/X,v), 3)

where X is the period of the laser scanner jitter, and the Fourier
coefficients Cy(v) are given by

Gl _X/

From Eq. (3), we see that the periodic laser scanner jitter causes
replication of the spectrum F'(u,v) of the original image in the
process (u) frequency direction with interval +, which is the re-
ciprocal of the period of the jitter. Each replication is weighted
differently by a function that varies in the scan (v) frequency di-
rection. Specifically, the k-th replication is weighted by Ci(v).

7j27r(kx/X+vd(x))dx. )

N\><

Periodic Laser Scanner Jitter with Sinusoidal
Displacement

In this section, we extend the model to the special case
where the periodic displacement is a sinusoid function d(x) =
Asin(2mx/X). Here A is a constant scale factor that is the peak
jitter displacement, and X is the period of the laser scanner jitter.
With an approach similar to that used in the previous section, we
can derive the Fourier coefficients as follows

Ce(v) = Ji(-2mAv), )

where the Fourier coefficients are articulated by the k-th order
Bessel function of the first kind [9].

To obtain the Fourier transform of g(x,y), we substitute
Eq. (5) into Eq. (3), yielding

G(u,v) ZJk —27AV)F (u—k/X,v). (6)
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In Eq. (6), the periodic laser scanner jitter introduces replications
in the process () frequency direction with interval % Each repli-
cation is weighted by the k-th order Bessel function, J;(—27Av),
that changes in the scan (v) frequency direction. The key dif-
ference between Eq. (3) and Eq. (6) is because of the sinusoidal
displacement; and we can derive a closed form for Fourier series
coefficients, which is the k-th order Bessel function.

To illustrate the structure of the spectrum given by Eq. (6)
and in particular, the v-axis dependence of the Fourier coefficients
due to the k-th order Bessel function, we use an example in Fig. 2
to demonstrate the phenomena. The image in Fig. 2(a) is an in-
finitely long vertical sinc-strip image g(x,y) = sinc(600y), where
sinc(&) = sin(n&)/(m&). This strip does not vary in the process
direction, and is centered at y = 0. It has zero crossings spaced
apart by 1/600 inch in the y direction. The Fourier transform
of this image is the function G(u,v) = (1/600)rect(v/600)0 (u),
which is a portion of an impulse sheet oriented along the v-axis.
Here, rect(&) = 1,|&| < 1/2, and rect(§) = 0, otherwise. This
spectrum is shown in Fig. 2(b). Figure 2(c) shows the sinc-strip
image with laser scanner jitter. The maximum displacement of
the jitter is 1/1200 inches. The Fourier spectrum of the sinc-strip
image is shown in Fig. 2(d). We can see clearly in Fig. 2(d)
that the constant amplitude impulse sheet in Fig. 2(b) is repli-
cated along the u-axis at multiples of the fundamental frequency
60 cycles/inch of the periodic jitter, and that along the v-axis, the
Fourier coefficients J; (—2mwAv) continuously modulate the ampli-
tude of each replication of this impulse sheet.

(a)

(c) (@

Figure 2. lllustration of the infinitely long vertical sinc-strip image with laser
scanner jitter that shows the v-dependent attenuation in the frequency do-
main. (a) The infinitely long vertical sinc-strip centered at y = 0 with zero
crossings in the y direction separated by 1/600 inch. (b) The Fourier spec-
trum of the infinitely long vertical sinc-strip image, which is an impulse sheet
with a rect function profile along the v-axis. (c) The infinitely long vertical
sinc-strip image with laser scanner jitter. (d) The Fourier spectrum of the
image in (a) with laser scanner jitter.
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Fourier Analysis of a Halftone Image with
Laser Scanner Jitter

In this section, we investigate in Fourier domain the relation-
ship between a halftone image and periodic laser scanner jitter.
We first derive in the Fourier domain the halftone image gener-
ated by the screening process. We use boldface lower case to
represent vectors, and boldface upper case to denote matrices. In
the following derivation, we use (x) = (x,y)” and [m] = [m,n] to
indicate continuous and discrete coordinates, respectively, where
the units of (x) and [m] are inches and printer-addressable pixels,
respectively. Here m corresponds to the process (vertical) direc-
tion, and n corresponds to the scan (horizontal) direction.

The screening process generates the halftone image by
thresholding the discrete-space continuous-tone image with a
threshold array. The threshold array is defined by two independent
tile vectors n; and ny; and the screen periodicity matrix N can be
written as N = [nj|mp]. To simplify the derivation, we focus on
a constant-tone image for the following analysis. The resulting
continuous-space halftone image /(x;a) can be expressed [10] as

h(x;a) = Y hlm;a] pgor(x—mR), ©)

meZ?

where h[m;a] is the discrete-space halftone image defined as

hlm;a] = {(1) if aei ' [m]. ®)

and pgor(x) is the printer dot profile defined as

rect(x/R),
= rect(x/R)rect(y/R). )

Pdot(X)

The variable a is the absorptance between 0 (white) and 1 (black);

and the parameter R in Egs. (7) and (9) is the horizontal and verti-

cal distance between printer-addressable pixels in units of inches.
The CSFT of h(x;a) can be expressed as

1 .
H(wa) = MPdot(u)C(uR;a)
x Y S(u— lN’Tt), (10)
tez? R

where Pyq(u) is the CSFT of pgo(x) defined as

oo

= [ paale P ax,

Paot (ll)

R%sinc(Ru),
= sinc(Ru)sinc(Rv), (11)
and C (u;a) is the Discrete Space Fourier Transform (DSFT) of

c[m;d]

Clwa)= Y, c[m;a]eif'z"“rm. (12)

meZz?

The function c[m;a] in Eq. (12) is the discrete-space halftone dot-
cluster function within the fundamental unit halftone cell Q. It
can be expressed as

1, ifa>tmjandm e Q
clm;a) = {0 [ else . (13)
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To derive the relationship between this halftone image and
periodic laser scanner jitter, we view the halftone image h(x;a)
as the continuous-tone image f(x,y) in Eq. (1) that is subject to
jitter. Then, the Fourier spectrum F (u,v) for the continuous-tone
image in Eq. (6) becomes the Fourier spectrum H(u;a) for the
halftone image given by Eq. (10). So substituting Eq. (10) into
Eq. (6), we obtain

ﬁ(u;a) _ ij( _ 2n[0,A]u)H (u— [k/X,oF;a) , (14
k

where H (u;a) denotes the Fourier transform of the continuous-
space halftone image with laser scanner jitter.

Evaluation of the Mathematical Model for
Laser Scanner Jitter

To evaluate our mathematical model, we compute the Fourier
spectrum of a halftone image with scanner jitter (Eq. 14). We
then compare the result with the Fourier spectrum of a scanned
test target of a 25% tint-fill (a = %) constant-tone image halftone
printed at 600 dpi with two different colorants, black and ma-
genta, using a dry toner laser EP printer. The printed test target is
then scanned with an EPSON Expression 10000XL at 2400 dpi.
The corresponding periodicity matrices of these two colors are
the default design for our target printer. The screen tile vectors
for magenta are n; = [3, —1]T and ny = [1,3]T. For black, they
are n; = [2,—2|T and my = [2,2]T. The screen frequency for ma-
genta is 190 Ipi. For black, it is 212 Ipi. The screen angle for
magenta is 18 degrees. For black, it is 45 degrees.

Figure 4 shows the scanned images of test targets that are
printed with a printer with normal-case and worst-case laser scan-
ners. In our experiment, we swapped the laser scanner assembly
in the same printer to eliminate other sources of variability that
might be observed from printer to printer. The left column im-
ages of Fig. 4 are printed with the normal-case laser scanner. The
right column images of Fig. 4 are printed with the worst-case laser
scanner. We can see a significant visual difference between the
two images in the first row of Fig. 4. However, we do not see a
visible difference between the magenta test targets because of the
screen angle of the magenta.

To compare the Fourier transform of the scanned images
with the analytical results obtained by evaluating Eq. (14), we
apply the following processes to the scanned images in Fig. 4(b)
and 4(d). First, we transform the scanner RGB to linear RGB by
computing the gray balancing curves for the R, G and B channels.
To obtain the gray balancing curves, we first scan the 24 neutral
gray scale patches on the Kodak Q60 target’, which is shown in
Fig. 3, with an EPSON Expression 10000XL scanner at 2400 dpi.
The R, G, and B values for each patch are computed as the av-
erage of all the pixel values within each patch. Then, the CIE Y
value of each gray scale patch is measure by the X-rite DTP70
Spectrophotometer. Finally, the gray balancing curves can be
approximated by a power law equation as follows

R, = a(R/255) +c, (15)
where R; =Y /100, and R; is the linearized R output value for a
patch. Similarly, we can also find the parameters, a, b, and ¢ for
the G and B channels.
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Next, we find the transformation matrix for transforming the
linear RGB values to CIE XYZ values. We use the process men-
tioned above to obtain the linear RGB values for the 228 color
patches on the Kodak Q60 target. Then, the transformation ma-
trix, M, is given by

M = (ATa)'ATx, (16)

where matrix A (228 x 3) contains the 228 linear RGBs, and ma-
trix X (228 x 3) contains the corresponding CIE XYZ values.
Based on the above processing, Fig. 4(b) and 4(d) are tranformed
to CIE XYZ. Finally, the CIE Y values are scaled to range from 0
(black) to 255 (white). We call the scanned Y image processed as
described above the luminance image.

Subsequently, we compute the 2D Discrete Fourier Trans-
form (DFT) of the luminance image. However, there are vertical
and horizontal line smears, and noise in the frequency spectrum
of the luminance image. These artifacts are not accounted for by
our analytical result obtained by evaluating Eq. (14). The vertical
and horizontal line smears may be due to that fact that the size of
the luminance image is a non-integer multiple of periods of the
halftone pattern. To eliminate the smears, a raised-cosine window
function is applied to the luminance image. This window func-
tion drops from 1 to O within a zone inside each boundary of the
image that comprises 5% of the total width or height of the im-
age. In our experiment, we only apply this window function to
the black color luminance image because the DFT of the magenta
color luminance image does not show obvious vertical and hori-
zontal line smears. The noise may be introduced by the printing
and scanning processes. To eliminate it, we clip everything below
65% of the peak value to zero. This threshold was chosen empiri-
cally. Finally, we multiply the entire spectrum by a constant scale
factor that makes the value at the origin the same as that for the
analytical spectrum. The final Fourier spectra of the printed and
scanned halftone patches are shown in Fig. 5(a) and (c).

Figure 5 compares the analytical results obtained by eval-
uating Eq. (14) to those obtained by computing the thresholded
DFT of the windowed luminance image of the black and the lu-
minance image of the magenta. The left column images of Fig. 5
are the thresholded Fourier spectra of the windowed luminance
image (black) and the luminance image (magenta). The right col-
umn images of Fig. 5 are based on Eq. (14) with the default pe-
riodicity matrices. For the computation, we set the values for the
parameters in Eq. (14) as follows: A = 1/1200 inches, a = 0.25
absorptance units, X = 1/60 inches, and R = 1/600 inches. Ac-
cording to Eq. 14, we will have frequency components where the
impulses are located; and an impulse corresponds to a pixel in
the plot. To enhance its visibility, we replace each such impulse
by a 9 x 9 square with constant amplitude. The Fourier spectrum
of the continuous-space halftone image with laser scanner jitter
exhibits replications of the spectrum of the original continuous-
space halftone image. Each replication is separated by 60 Ipi
(lines-per-inch) in the frequency domain with different weights.
This is because the period X of the laser scanner jitter is %
inches. By comparison, the spectrum of the scanned image also
shows replications that are separated by 60 Ipi.

We can see that the analytical Fourier spectrum of magenta
can predict the thresholded spectrum of the luminance image ef-
fectively. However, there is some mismatch in black. There are
three possible reasons for this issue. First, the instability of the
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EP process may not reproduce the given test target perfectly. Fur-
thermore, the screen frequency of black is higher than the screen
frequency of magenta. Thus, the printed image of magenta would
have better print quality. Second, we assume the displacement
function to be a sinusoid function. However, the actual displace-
ment is not a perfect sine wave function. Finally, the thresholded
Fourier spectrum of the windowed luminance image shows that
the spectral peaks roll off more as we move away from the ori-
gin than is the case with the analytical spectrum computed us-
ing Eq. (14). This could be due to the fact that our analytical
model assumes that each printer addressable pixel is the function
rect(x). However, the effective spot shape may be larger than it
is in our model due to dot gain effects. The above factors may be
responsible for the mismatch in the first row of Fig. 5.

Figure 3. Kodak Q60 target we used to obtain the gray balancing curves
for the R, G and G channels, and the transformation matrix from linear RGB
to CIEXYZ

Conclusions

In this paper, we present a new method for characterizing
and analyzing the Fourier spectrum of periodic laser scanner jit-
ter. Unlike prior studies, we incorporate the periodic character-
istics of laser scanner jitter into the mathematical model and ex-
tend the model to the special case where the jitter has a sinusoidal
displacement. This leads to a simple closed-form expression in
terms of Bessel functions of the first kind. We further investi-
gate the Fourier domain relationship between a continuous-space
halftone image and laser scanner jitter. Our preliminary experi-
mental results shows that the mathematical model can effectively
characterize the phenomenon of laser scanner jitter.
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Figure 4. Comparison of the scanned test targets printed with normal and
worst-case laser scanner in two different colorants, black and magenta. (a)
The scanned test target printed in black with normal laser scanner. (b) The
scanned test target printed in black with worst-case laser scanner. (c) The
scanned test target printed in magenta with normal laser scanner. (d) The
scanned test target printed in magenta with worst-case laser scanner.
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thresholded Discrete Fourier Transform of the black color windowed lumi-
nance image obtained by the color space transformation of the black color
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