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Abstract
We investigate the influence of fluid properties on jet breakup

in the context of drop-on-demand inkjet printing. In drop-on-
demand printing, each drop remains connected to the printhead
by a ligament which thins while the drop is in flight. Upon pinch-
off the severed ligament may recoil into the leading drop, or (more
commonly for high-speed printing) the ligament may fragment
into ‘satellite drops’ which reduce printing resolution. A key goal
of inkjet research is to prevent or impede the creation of satel-
lite drops without compromizing on printing speed. Viscoelastic
and shear-thinning fluids may, in rather different ways, exhibit
enhanced resistance to fragmentation in jetting flows compared
to Newtonian fluids of similar viscosity. In this work we seek to
explore and exploit this behaviour with the overall aim of increas-
ing the proportion of ejected ink contained within the main drop
when printing at a prescribed drop velocity. Using Lagrangian
finite-element simulations under realistic industrial inkjet con-
ditions, we consider a non-Newtonian fluid model which incor-
porates both viscoelastic and thixotropic effects simultaneously.
We discuss how appropriate values of the rheological parameters
may be chosen so as to optimize the fluid’s transient viscosity at
different key stages of a drop-on-demand flow cycle, and how our
results may be beneficial to industrial and commercial applica-
tions of inkjet technology.

Introduction
Among the major challenges in contemporary inkjet research

are the enhancements of the speed, resolution, and material diver-
sity of the printing process in order to broaden the range of in-
dustrial and commercial applications and improve existing tech-
nology. These challenges may be addressed in a number of ways
depending on the extent to which each constituent part of the pro-
cess may be modified, for example, by redesigning the internal
structure of the printhead or changing the actuation waveform that
drives the jetting, or by adjusting the fundamental fluid properties
of the ink (chiefly its viscosity and surface tension). An extension
of the latter approach involves the exploitation of non-Newtonian
fluid phenomena, and in recent times this has led to the devel-
opment of several new applications of inkjet technology [1] [2].
Viscoelastic effects may influence jetting behaviour profoundly
[3] [4], as may the presence of a particulate phase [5].

Due to the various ingredients necessary to provide the re-
quired levels of performance and chemical stability, the majority
of fluids used in real inkjet applications are, in essence, colloidal
suspensions and consequently they may exhibit some degree of
non-Newtonian behaviour when subjected to rheological charac-
terization [6]. The local variation of viscosity in such a fluid
can influence the breakup dynamics of a particle-laden jet com-
pared to those of Newtonian jets [7], and may therefore determine
whether the fluid is suitable for a particular application. Con-
versely, the capacity to impose explicit control upon the breakup

behaviour, by making appropriate modifications to the rheolog-
ical properties of the ink, is an important versatility requirement
of industrial and commercial printing technologies [8]. A detailed
understanding of the effects of rheology on breakup is thus an on-
going ambition of inkjet research.

In a drop-on-demand (DOD) inkjet printer each individual
drop is formed by the ejection of a finite ligament of ink from one
of an array of nozzles located directly above the target area for
deposition. This ligament subsequently either disintegrates into
a main drop and a series of smaller ‘satellite’ drops, or, prefer-
ably, contracts to form a single drop, before impacting on the tar-
get substrate. The fate of the ligament depends mainly on the
speed of printing and on the ink viscosity and surface tension (i.e.
the Reynolds, Weber, and Ohnesorge numbers of the flow) which
control its rate of capillary thinning [9]. In almost all applications
the production of satellite drops in significant number or volume
is considered highly undesirable due to reduced resolution in the
printed output.

Historically there have been few studies of the printing of
non-Newtonian fluids, although the subject has undergone sub-
stantial development in recent years as the complexity of the fluid
dynamics and the rich potential for novel applications have fu-
eled research in this area [1] [2]. Experimental studies of the
DOD printing of polymer solutions have revealed a diverse family
of viscoelastic jet behaviour depending on the concentration and
molecular weight of the polymer. The observations of Bazilevskiy
et al. [10], Shore and Harrison [11], Hoath et al. [12], Xu et al
[13], and Yan et al. [14] have shown consistently the same phe-
nomena for a variety of polymers and over a range of operating
conditions; these phenomena have been reproduced in simulations
by the present authors, both qualitatively [15] and quantitatively
[16]. Even small amounts of polymer can cause severely different
breakup dynamics compared to Newtonian printing, influencing
both in-flight fragmentation and detachment from the nozzle, and
significant concentrations can also impede jettability due to high
elasticity in the ligament.

More generally the introduction of a polymeric component,
even at a low concentration, can significantly alter the dynamics
of free-surface breakup [17]. The profound effects of elasticity
are sufficiently robust that data extracted from measurements of
capillary thinning flows have been used to provide fluid rheome-
try [18], and to establish the validity of computational schemes for
viscoelastic flow [19]. Elasticity accelerates the initial growth of
the capillary instability but prolongs the overall lifespan of a thin-
ning fluid filament, delaying its eventual breakup, as was shown
in an early study by Goldin et al. [3]. Unlike the Newtonian case,
the radius of a thinning filament of polymeric fluid decreases at
an exponential rate (based on the relaxation timescale of the poly-
mer) while the molecules are undergoing elongation [20], before
deviating rapidly towards finite-time breakup as the molecules be-
come fully extended [21]. The finer details of the dynamics vary
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to some degree with the choice of constitutive model [22]. De-
pending on its initial aspect ratio, a viscoelastic filament may also
develop the self-similar pattern described as ‘beads on a string’ or
‘blistering’ [23].

Shear-thinning fluid models have received somewhat less at-
tention, but have also been shown to exhibit markedly differ-
ent behaviour in filament stretching flows [24] and jet breakup
[25] compared to the purely Newtonian case. Doshi et al. [26]
performed a thorough analysis of capillary thinning rates for a
Carreau fluid [27] (and a power-law fluid as a limiting case),
which complemented contemporary work by Renardy [28] [29].
Drop formation has been addressed, as in computational work
by Yıldırım and Basaran [30] who studied the influence of both
shear-thinning and shear-thickening rheology on dripping over a
range of flow rates, finding a rich family of regular and irregu-
lar patterns; parameters conducive to the potential suppression of
satellite drops were also discussed. Experiments on the forma-
tion of pendant drops of particle suspensions have also suggested
the reduction of satellites [5] [7] [31]. A recent experimental
survey by Clasen et al. [32] concerning the ejection of a vari-
ety of complex fluids through millimetre-sized needles has pro-
vided a valuable summary of non-Newtonian effects, including
shear-thinning. In a study more specific to high-speed printing,
the present authors have shown in simulations of Carreau fluids
that shear-thinning behaviour may reduce both the number and
sizes of satellites when printing at a prescribed main drop veloc-
ity [16], and recent experiments by Hoath et al. [33] have corrob-
orated these overall conclusions.

In this work we consider the influence of non-Newtonian
rheology on ligament breakup in DOD simulations; we use a fluid
model with both viscoelastic and shear-thinning attributes, and we
explore its parameter space with the aim of increasing the propor-
tion of ejected ink contained within the main drop when printing
at fixed speed.

Numerical method and boundary conditions
The simulations use an axisymmetric Lagrangian finite-

element method first developed for the study of creeping flow of
dilute polymer solutions [34]. The method has since been ex-
tended to inertial flows and has been applied to inkjet printing of
Newtonian and complex fluids [35] [15] [16]; details of the com-
putational methods may be found in these references. The shape
of the nozzle used in the simulations is identical to that in refer-
ences [15] and [16], based on a Xaar 126 printhead with nozzle
radius R = 25µm. At the nozzle inlet a time-dependent velocity
boundary condition is imposed in the form of a ‘pull/push/pull’
drive waveform of ≈ 30µs duration; this waveform is ampli-
fied in each simulation in order to attain a prescribed drop speed
U = 6ms−1 for all fluids modelled. Consequently the total vol-
ume of ejected ink is not necessarily constant.

We assume that the jet is axisymmetric, so that it may be
fully described by a cylindrical coordinate system {r,θ ,z} with
all flow variables independent of θ . The origin is taken as the
centre of the nozzle outlet, and the fluid is initially at rest. The
boundary conditions at the free surface are those of zero shear
stress and the pressure jump due to surface curvature,

n̂ ·σ · t̂ = 0 ,
[
σ · n̂]jet

air = − 1
We

(
1

R1
+

1
R2

)
n̂ , (1)

where σ is the dimensionless stress tensor, n̂ is the unit outward
normal to the interface, t̂ is the unit tangent in the rz-plane, and R1
and R2 are the principal radii of curvature. External air pressure
is neglected. Symmetry conditions on the z-axis are ur = 0 and
σrz = 0, and conditions of no-slip are applied at the rigid interior
printhead boundaries. The contact line between the free surface
and the printhead is held pinned at the nozzle edge throughout.

The location of the free surface at each time-step is deter-
mined implicitly via a kinematic condition. In the simulations
this is realized automatically, since the mesh is Lagrangian and
the mesh nodes are advected with the local fluid velocity. Drag
due to air resistance is neglected, as are temperature variations.

Fluid model and governing equations
The governing equations are the conservation of momentum

and mass for an incompressible dilute polymer solution

ρ
Du
Dt

= ∇ ·σ , ∇ ·u = 0 , (2)

where ρ is the fluid density, t and u are the time and fluid velocity
respectively, and σ is the stress tensor which may be expressed as

σ = −pI+2μSE+
μP

τ
(A− I) , (3)

where p is pressure, μS is the solvent viscosity, μP is the poly-
meric contribution to the viscosity, τ is the relaxation time, E =
1
2

(
∇u+(∇u)T

)
is the rate of strain tensor, and A is the polymeric

structure tensor.
In this work we use the single mode Giesekus fluid

model [36] which incorporates both viscoelastic and shear-
thinning behaviour. For this model the structure tensor satisfies
the following evolution equation:

�
A ≡ DA

Dt
−A ·∇u−(∇u)T ·A =−1

τ
(A−I)− α

τ
(A−I)2 , (4)

where α is a dimensionless parameter (sometimes called the mo-
bility factor [37]) which controls the size of the non-linear term.
When α is zero the Giesekus model reduces to the Oldroyd-B
model, and when α is small there is an analogy with the FENE-
CR model with extensibility L ∼ α−1/2.

For fixed solvent viscosity and density, the range of non-
Newtonian behaviour which may be modelled is controlled by
three dimensionless parameters: (i) the ‘concentration’ c =
μP/μS, (ii) the Weissenberg number Wi = τ/T , which mea-
sures the relaxation time τ against a characteristic flow timescale
T = R/U , and (iii) the mobility factor α mentioned above. These
are in addition to the usual ‘Newtonian’ dimensionless quanti-
ties [38]: the Reynolds number Re = ρUR/μS(1+ c), the Weber
number We = ρU2R/γ (where γ is the surface tension), and the
Ohnesorge number Oh = μS(1 + c)/

√
ργR =

√
We/Re. Grav-

ity is negligible on the lengthscales considered in this study.
Throughout this work we keep ρ , μS, and γ constant, with
We ≈ 14, and we vary c (hence Re and Oh); typical values are
Re ≈ 42 and Oh ≈ 0.1. For flows involving jet breakup it is
common to define a capillary time tc =

√
ρR3/γ = T

√
We as the

relevant timescale for inertio-capillary thinning [23].
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Rheology and implications
In order to choose appropriate values of the parameters in

the Giesekus fluid model, we consider how the transient viscosity
of the fluid should vary during the three key phases of a drop-on-
demand cycle. Firstly there is high shear during the ‘push’ stage
of the driving waveform as fluid is ejected rapidly through the
nozzle; in this phase the viscosity should be low for ease of ejec-
tion without excessive amplification (i.e. voltage). Secondly there
is extension during the ‘pull’ stage of the driving which draws
out a ligament behind the leading drop; the viscosity should re-
main quite low in this phase to allow prompt detachment of the
ligament from the printhead, but not so low that the capillary
instability develops fully along the ligament while it is still at-
tached. Thirdly there is the thinning of the detached ligament,
during which phase the viscosity should be high in order to de-
lay breakup and maximize the proportion of ink which ultimately
ends up within the main drop. We therefore wish to find values
for the non-Newtonian parameters to optimize the fluid properties
in each of these key phases.

One means of doing this without solving the full inverse
problem is to compare the viscosity response functions for three
standard rheometric flows: steady shear at rate γ̇ , steady exten-
sion at rate ε̇ , and small-amplitude oscillatory shear at frequency
ω . The corresponding rheometric response functions1 are the
shear viscosity η(γ̇), the extensional viscosity η̄(ε̇), and the com-
plex viscosity magnitude |η∗(ω)|; analytical expressions of these
functions exist for the Giesekus fluid [37]. To plot the functions
on common axes we define a Deborah number (De) equal to τγ̇
for shear, τε̇

√
3 for extension, and τω for oscillatory flow.
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Figure 1. The dependence of the rheometric functions on α .

In Fig. 1 the rheometric functions are shown for three values of α ,
with the other parameters fixed: c = 3 and τ = 10µs (Wi = 2.4).
For ease of comparison, η and |η∗| are scaled by μS, and η̄ by
3μS, to have a common intercept of 1 + c as De → 0 (the zero
shear rate limit). The corresponding asymptotes as De → ∞ are
1 and 1 + 2c/3α . It is clear that the increase in extensional vis-
cosity η̄ is strongly dependent on α whereas the shear viscosity
η is affected only modestly: the latter falls smoothly between
its two asymptotes and in this sense c determines the magnitude
of the shear-thinning transition for the cases shown. It should be
noted that |η∗| is actually independent of α [37]. The two vertical

1Discussion of the first and second normal stress difference functions
has been omitted for brevity.

lines in Fig. 1 illustrate the estimated range of deformation rates
most relevant to the key DOD flow phases discussed above, and
thus we favour values of the viscoelastic parameters which yield
significant transitions within this range. Because the rheometric
functions depend on τ (hence Wi) only through the product De,
the effect of varying τ is simply to shift these vertical lines hori-
zontally: a value of around 10 µs gives optimal alignment of the
viscosity transitions within the relevant range of Deborah number.

The combined influences of c and α on the magnitude of
these viscosity transitions are illustrated in Figs 2 and 3 which
show heat-maps and contours of the drop in shear viscosity η and
the rise in extensional viscosity η̄ , respectively, between De = 0.5
and De = 10, i.e. between the two vertical lines plotted in Fig. 1.
In simplistic terms one would like to choose c large enough to
see substantial shear-thinning, and α large enough so that exten-
sion does not dominate. However it should be emphasized that
the rheometric functions are defined for steady flows and should
therefore be used only as a rough guide to how the fluid may re-
spond to transient flow on the short timescales involved in DOD
printing.

shear viscosity drop : τ = 10 μs
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Figure 2. The variation of the drop in scaled shear viscosity (η/μS).

extensional viscosity increase : τ = 10 μs
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Figure 3. The variation of the rise in scaled extensional viscosity (η̄/3μS).

Another consideration to be borne in mind when choosing
parameter values is the empirical Cox-Merz rule [39], which is
that η and |η∗| have been found to be roughly equivalent as func-
tions of Deborah number for a wide class of physical polymeric
fluids; as illustrated in Fig. 1, the Giesekus fluid model follows
this rule. The rheometric functions for the Giesekus model may
be compared to those of other models studied previously; we note
that for a generalized Newtonian fluid [16], η/μS and η̄/3μS are
identical functions of deformation rate γ̇ = ε̇

√
3 (i.e. a Carreau

fluid is also extension-thinning, as well as shear-thinning).
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Results
Free-surface shapes of the ejected ligament are plotted in

Fig. 4 for several values of concentration, with the other param-
eters held constant. Each curve corresponds to time t = 50µs =
12T during the flow, i.e. after the driving waveform has ended
but before detachment. The radial and axial coordinates (r,z) are
scaled by nozzle radius R = 25µm. There is clear enhancement of
the development of the instability along the ligament surface with
increasing concentration, as well as a growth of the leading drop
radius due to the greater drive amplitude required to maintain an
ultimate drop speed of U = 6m/s; similarly the meniscus is drawn
back further inside the printhead (z < 0) at larger c.
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Figure 4. Variation of ligament shapes with concentration; the direction of

printing is left to right, with the nozzle plate at z = 0.

Analogous plots for cases with varying α are shown in Fig. 5.
The same trends of enhanced surface development and greater
drop radius are found with increasing elasticity (decreasing α).
These findings agree qualitatively with previous results on vis-
coelastic printing [15]. In addition the instantaneous length of the
ligament increases at smaller α because the greater extensional
resistance slows the leading drop while it remains attached to the
printhead; since the ultimate detached drop speed is fixed, the
drop speed at the instant shown is therefore faster when α is small.
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Figure 5. Variation of ligament shapes with α .

The drive amplification necessary to attain the specified main
drop speed U for each choice of parameters was found by itera-
tion; the required amplitude may be thought of as a measure of re-

sistance to ejection. The variation of this amplitude with c and α
(for fixed Wi = 2.4) is shown in Fig. 6, with values scaled relative
to the case c = 0 (i.e. the Newtonian solvent has a drive ampli-
tude of 1). Dependence on c is roughly linear for each set of fixed
α , and dependence on α is approximately reciprocal for fixed c.
Hence when plotted against the quotient c/α the amplitude data
show reasonable collapse towards a common line, with some de-
viation at the smallest values of α . This is not unexpected due
to the influence of the same quotient on the extensional viscosity
(see Fig. 1).
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Figure 6. The amplitude of the drive waveform required to impose a drop

speed of U = 6 m/s, plotted against the quotient c/α . Amplitudes are relative

to the Newtonian case of pure solvent.

In Fig. 7 an interpolated heat-map of the drive amplitude
over the non-Newtonian parameter space is shown. To give a feel
to the numbers, we note that in simulations of Newtonian cases
(not shown here) the drive amplitude was found to increase ap-
proximately linearly with viscosity, with a value of about 1.5 at
50 mPa s. Diagrams such as Fig. 7 may be useful in practice from
an operability perspective, as the known limitations of a printer
may impose restrictions on which regions of the parameter space
are accessible without compromizing on drop speed.

 0  1  2  3  4  5  6  7

c

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

α

 1

 1.2

 1.4

 1.6

 1.8

 2

am
pl

itu
de

Figure 7. The drive amplitude as a map over (c,α)-space, with Wi = 2.4.

The time at which the ligament detaches from the printhead
is plotted in Fig. 8 against c/α . In the simulations pinch-off oc-
curs when the ligament develops a neck thinner than 0.5% of the
nozzle radius R. There are some crude tendencies: for low c the
detachment time increases with α−1 while for higher c the oppo-
site occurs, but there is no simple overall trend. Most importantly
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however, for all cases considered the time of detachment remains
bounded within a fairly narrow interval ≈ 50–70 µs, which is a
positive aspect of the Giesekus model in comparison to Newto-
nian cases of high viscosity (50+ mPa s), which have detachment
times substantially later than 150µs, and compared to previous
findings for other models of polymer solutions [15] where the
pinch-off time may be delayed significantly by viscoelastic ef-
fects. Consequently, the ligament length upon detachment is also
bounded within a range which compares favourably with other
fluid models.
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Figure 8. The time at which detachment of the ligament from the printhead

meniscus occurs, plotted against the quotient c/α , with Wi = 2.4.

To assess the effects of the non-Newtonian parameters on the
formation of satellite drops, in keeping with previous work [16]
we define the printing ‘efficiency’ for each case to be the volume
proportion of the total ejected fluid which is contained ultimately
within the main drop. The efficiency data for our simulations of
Giesekus fluids are shown in Fig. 9. The data are plotted against
the quantity c/

√
α because this was found to give the best col-

lapse; however it should be emphasized that the efficiency is an
heuristic measure. The overall volume of ink ejected (not plotted
here) is roughly proportional to c/α because it is linked directly to
the driving amplitude. The efficiency inherits some of this depen-
dence, but is also affected by subtle ligament breakup dynamics.
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with Wi = 2.4.

The values in Fig. 9 show a quantitative improvement on
Newtonian fluids of viscosity up to 15 mPa s (which have effi-
ciency below 75%). In our fixed speed simulations, Newtonian
efficiency values approaching 90% may be reached only at much
higher viscosities which involve long thin filaments and much
later detachment times which are unwieldy for high frequency
printing. The efficiency data may also be visualized as a heat-
map as shown in Fig. 10 which, together with Fig. 7, represents
a ‘guide’ to the non-Newtonian parameter space in the sense that
these diagrams summarize the variation of two of the most critical
quantities for performance and operability, respectively.
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Figure 10. The variation of ‘efficiency’ (volume proportion of total ejected

ink contained within the main drop) with c and α , for fixed Wi = 2.4.

It should also be noted that in this study we do not incorpo-
rate any collisions or coalescence of drops after ligament breakup
has occurred. In some cases it is apparent that such collisions do
occur, which, if taken into account, result in small increases to
some of the efficiency values as more volume is transferred to the
main drop. However, as our aim is to consider non-Newtonian ef-
fects on the flow dynamics prior to ligament breakup, we choose
not to include any coalescence adjustments.

Conclusions and future work
The results shown in these investigations have demonstrated

that a combination of viscoelastic and shear-thinning effects could
yield improved printing resolution while maintaining a high print-
ing speed and without modifying the drive waveform beyond sim-
ple amplification. The proportion of ejected ink contained within
the main drop is found to be substantially larger than compara-
ble Newtonian cases, when non-Newtonian parameters are chosen
appropriately based on rheological considerations. This improve-
ment is attained without any significant delay in the detachment
of the ligament from the printhead.

Further exploration of the parameter space is underway. In
particular, the results of varying the relaxation time τ have been
omitted here for brevity, as has a detailed study of the transient
deformation rate and non-Newtonian stress within the flow. The
latter provides important feedback into our understanding and ap-
plication of the rheology of the Giesekus fluid model, and how
our findings differ from those of previous studies where either
viscoelastic or shear-thinning effects were considered separately
and similar results were established [16]. In addition, by incor-
porating a variety of solvent viscosities, it should be possible to
extend the applicability of these results to other regimes.
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