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Abstract 

We will address two major issues in the field of printed 
electronics: printing metallic conductive patterns on heat sensitive 
substrates, and obtaining transparent patterns and coatings for 
opto-electronic devices. New concepts for obtaining conductive 
patterns at low temperature will be presented, all based on 
spontaneous sintering of metallic nanoparticles caused due to 
removal of the ink stabilizer. The process can be performed with 
inks containing built-in sintering agent, or by sequential printing 
of the metallic ink and the sintering agent. A new method for 
fabrication of conductive transparent electrodes will be also 
described, based on spontaneous self-assembly of metallic 
nanoparticles into a grid pattern on plastic substrate, and on thin 
films of CNTs. Combining the printing with transparent patterns 
will be demonstrated in fabrication of a plastic electroluminescent 
device. 

Introduction  
Fabrication of various electronic devices requires formation 

of a conductive structure (electrical circuit), which connects 
various components of a device. Inkjet printing provides facile 
technology for fabrication of high quality and low cost conductive 
circuits. Nowadays most of conductive inkjet inks are based on 
metal nanoparticles, mainly silver, and to some extent on inks 
containing soluble metal precursor, e.g. metallo-organic 
decomposition inks, which transform to metal after post-printing 
treatment [1-3]. Recently dispersions of carbon nanotubes (CNT) 
were also used as functional materials for inkjet printing of 
conductive patterns [4, 5]. 

In the electronic industry, manufacturing electronic devices 
such as flexible displays, RFID tags, sensors, OLEDs, PV devices 
including solar cells, batteries, and printed circuit boards (PCB) by 
inkjet printing of conductive inks can provide low-cost technology 
for  manufacturing large-area electronics with high resolution. The 
main advantages of inkjet printing compared to other deposition 
methods, such as electroless plating, photolithography, and screen 
printing, are one-step processing, low cost and compact equipment, 
usually lack of hazardous wastes, and applicability to various 
substrates [1]. An important advantage of inkjet printing is also the 
wide range of materials, which can be used as substrates: paper, 
glass, metals, ceramic, polymeric films. The last are especially 
important for industrial fabrication of flexible plastic electronic 
devices by R2R printing.  

While using nanoparticulate inks, two important challenges 
arise. First is obtaining high electrical conductivity after printing. 
Since inkjet ink is a dispersion of conductive nanomaterial, e.g. 
metal in a solvent which contains mainly organic additives 
(stabilizer, binder, wetting agent etc.), the post-printing sintering of 
nanoparticles in order to remove the insulating organic components 
is usually required. The routine method for sintering is the heating 

of the printed pattern to temperatures above 200 ºC, to cause 
decomposition of the organic materials [1, 6, 7]. However, heating 
to high temperature is inapplicable in the case of paper or plastic 
substrates, such as, for example, polyethyleneterephthalate and 
polycarbonate, which are widely used in plastic electronics. 
Therefore, development of new low-temperature methods for 
sintering is required. To avoid destructive heating of polymeric 
substrates, other sintering methods are now under development: 
photonic, microwave, plasma, and electrical [1]. All these methods 
enable obtaining printed patterns with rather high conductivity, but 
their common disadvantages are the high-cost equipment and high 
energy consumption. Therefore, there exists a need for ink 
formulations and methods of substrate tailoring, which would 
enable obtaining high conductivity at low temperatures. 

The second challenge in this field is obtaining transparent 
conductive coatings, which can be utilized in displays, touch 
screens, electroluminescent devices and solar cells. Conductive 
oxides, such as tin-doped indium oxide (ITO), which are 
traditionally used for fabrication of transparent electrodes, have a 
number of disadvantages, such as high cost and low conductivity. 
Therefore, much efforts is devoted nowadays to finding 
alternatives, which will bring high conductivity and yet high 
transparency. 

Here we report on a new concept for obtaining conductive 
patterns on various substrates by spontaneous sintering of printed 
metallic nanoparticles (3D coalescence) at low temperatures by 
modification of inkjet formulation with built-in sintering agent 
(SA) and by sequential printing of ink and SA. We also show how 
this process can be utilized for fabrication of electroluminescent 
(EL) plastic devices. In the second part we present a new method 
for fabricating conductive transparent electrodes based on 
spontaneous self-assembly of metallic nanoparticles into a grid 
pattern on plastic substrate. In the third part we describe an 
effective route for fabrication of flexible EL devices with inkjet 
inks composed of aqueous dispersions of CNTs. 

Results and Discussion 

Metallic inks and sintering at room temperature 
For printing experiments we used water- and solvent-based 

polymer-stabilized dispersions of silver nanoparticles with an 
average size of 10-15 nm and metal content of 20-40 % that were 
synthesized in our lab by wet chemistry methods [8]. The printing 
was performed by an Omnijet100 inkjet printer (Unijet, Korea) 
equipped with Samsung piezoelectric printhead of 30 picoliters. 
The sintering of printed patterns was performed with the use of 
conductive silver inks that contain a built-in SA, NaCl, or by 
sequential printing of silver nanoparticles and electrolyte sintering 
solution ("double printing") [9] as presented in Figure 1. The  
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Figure 1. Schemes of obtaining sintered printed patterns with the use of built-in SA (top) and by sequential printing of ink and SA (bottom). 

ability to decrease the resistivity of printed silver nanoparticles by 
chemical means was reported by Zapka et al. [10]. 

The mechanism of sintering with built-in SA is based on 
replacement of the stabilizing polymer molecules which are 
present on the surface of silver nanoparticles, by chloride ions. 
This sintering approach enables obtaining printed pattern with 
conductivities up to 41% of that for bulk silver without any post-
printing treatment [8]. Similar mechanism operates also at 
sequential printing – replacing the polymer molecules thus 
diminishing their electrosteric stabilizing effect that results in 
formation of metallic patterns with conductivities above 30% of 
bulk silver.  Figure 2A presents a flexible transparent four layer EL 
device (PET:ITO:ZnS:BaTiO3) with electrodes printed with the 
use of silver ink containing built-in SA, and Figure 2B shows 
printed silver tracks sintered by a "sequential  printing" method. 

 

 
Figure 2. EL device with silver electrodes printed with ink containing built-in 
SA (A) and silver tracks printed by "sequential printing" (B). 

Conductive transparent electrodes (grids) 
composed of metallic nanoparticles 

In addition to the required high electrical conductivity, in a 
number of applications, such as displays (LCDs, touch screens, e-
paper, etc.), lighting devices (EL, OLEDs), and solar cells, 
transparent conductive coatings are required. An alternative to the 
widely used ITO coatings is transparent coatings (transparency up 
to 95%) based on self-assembly of metallic nanoparticles in the 
form of 2D arrays of interconnected micrometric rings obtained by 
inkjet printing of picoliter droplets of silver dispersion [11]. 
Another approach is based on evaporative lithography process 
[12], which is performed directly on plastic substrates by placing a 
droplet containing silver nanoparticles on the top of metallic mesh 
followed by instantaneous spreading over the mesh and the plastic 

substrate [13]. After drying, a transparent grid composed of the 
nanoparticles is formed. The immediate sintering of silver 
nanoparticles stabilized by polyacrylate in the thin lines of the grid 
occurs even at room temperature upon short exposure to HCl 
vapors enabling formation of transparent patterns (transparency 
above 75%). Figure 3 shows a HR-SEM image of such a grid 
formed by placing a droplet of silver nanoparticles on top of a 
stainless steel mesh. After complete evaporation of the liquid, the 
mesh is removed and a transparent grid pattern is formed (Figure 
3). The line width is only a few micrometers in average, which 
makes the grid transparent, and the height can be of up to 1.5 um, 
which is important in applications such as solar cells and OLED 
devices. Typically  the whole process takes no more than a few 
minutes and does not require any complicated equipment, yielding 
a transparent grid with a resistivity of about 10-5 Ω·cm. 

 

 

Figure 3. Transparent silver grid obtained by evaporative lithography process. 

EL devices with CNT-printed electrodes 
Patterned electrodes with high transparency, which are 

suitable for fabrication of EL devices, can also be obtained by 
inkjet printing combined with wet coating of CNT-based inks. The 
conductivity of a CNT film is mainly determined by its thickness - 
the thicker films result in lower sheet resistance, but obviously less 
transparent.  
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Here we demonstrate the formation of flexible EL devices 
using a low cost ink based on Multi-Walled Carbon Nanotubes 
(MWCNT).  The electrodes were formed by two deposition 
methods: the transparent electrode (back electrode) was a thin 
MWCNT film prepared by bar coating, and the counter electrode 
(grid) was formed by inkjet printing. 

The thickness of transparent (back) electrode was in the range 
of 6 - 80 µm (wet film thickness). The counter electrode was 
formed by inkjet printing of the same MWCNT dispersion. The 
performance of the devices was compared by luminance 
measurements after applying a voltage of 200 V. A scheme of an 
EL device with MWCNT electrodes and a photo of a working 
device are shown in Figure 4.  

 

 
Figure 4. Scheme of EL device with MWCNT electrodes (left) and a working 
EL flexible device (right). 

It was found that increase in wet thickness of the back 
electrode results in a decrease in sheet resistance, but as could be 
expected, is accompanied by a decrease in transmittance. The 
thinnest film (wet thickness of 6 µm) has R = 16.3 ±2.9 KΩ/□ and 
T = 66.3 ±0.4%. For the thickest film (wet coating of 80 µm), the 
resistance was 0.7 ±0.2 KΩ/□ but the obtained film was not 
transparent (T = 0.2±0.1%). As the transparency of the back 
electrode decreases, the luminance emitted by the device decreases 
al well. The device formed by the thinnest film (6 µm wet 
thickness) emits a luminance of 124 ± 5 cd/m2, while for the 
thickest film (wet coating of 80 µm), the detected luminance was 
close to zero. 

The conductivity of printed MWCNT films remains constant 
under bending, and the overall performance of the devices remains 
unchanged after twenty bending cycles to 180o.  

In summary, we presented the use of metallic and CNT-based 
inks, methods for obtaining metallic conductive printed patterns 
without heating, and obtaining transparent conductive arrays based 
on self assembly combined with printing. 
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