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Abstract 

Inkjet printing is a digital printing technique that is capable 
of depositing various functional materials onto different substrates 
in an additive way. In this contribution, applications of inkjet 
printed structures for smart microfluidic lab-on-chip systems are 
discussed. Such systems can be used e.g. for different chemical or 
biochemical analysis tasks and are often fabricated from polymers. 
Inkjet-printed electrodes and electroactive polymer (EAP) 
actuators for use in microfluidic lab-on-chip systems are shown. 
Silver and gold electrodes are presented that are fabricated by 
printing metal nanoparticle inks onto polymer substrates. After 
printing the structures are sintered using low-pressure argon 
plasma sintering, a low-temperature sintering process that is 
compatible with polymer substrates with a low glass transition 
temperature TG. The structures consist of several electrodes and 
contact pads and feature minimum structure sizes of approximately 
70 µm. These structures are in principle suitable for requirements 
in lab-on-chip systems. The use of all inkjet-printed EAP actuators 
in a polymer-based micropump is discussed. Cantilever-type 
bending actuators generate deflections of more than 190 µm when 
a voltage of 600 V is applied. Based on these results, performance 
characteristics of a micropump with printed actuators are 
estimated. 

Introduction  
Microfluidic lab-on-chip systems are systems that can be used 

to control, mix and analyse small fluid volumes. In such systems, 
different biological and chemical analysis processes can be carried 
out [1]. Lab-on-chip systems can be fabricated from polymer 
materials and often consist of a substrate with fluid channels and a 
cover foil. For example, chip-based electrophoresis is used to 
separate different contents of test fluids by means of an electric 
field [2]. The electrode structures can be applied on the cover foil 
of the chip using standard thin film processes. 

For the distribution of fluids across the channels of a chip, 
pumping and valve functions are required. Typically, external 
pumps are used and well-developed. A drawback of external 
devices is the need for an assembly process for the complete 
system. As an alternative, several types of micropumps have been 
investigated by different groups. The use of pumps that create a 
fluid flow based on a membrane that deflects above a pumping 
chamber is widespread. Piezoceramic actuators, often fabricated 
from lead-zirconate-titanate (PZT) can be used to drive the 
membranes [3]. The mechanical parts of the pumps are typically 
fabricated using mass-compatible processes, while the PZT 
element is fixed on the membranes by adhesives. Therefore, a 

separate joining step is necessary. To avoid this additional process 
step, electroactive polymer (EAP) foils [4] or screen-printed PZT 
layers [5] can be employed. With screen-printed PZT, a high-
temperature sintering step above 900 °C is needed, which is not 
applicable to low-cost polymer materials. 

Inkjet printing is a digital printing process by which different 
solutions or suspensions of functional materials (“inks”) can be 
deposited. Different from lithography-based processing, no mas-
king is required. Furthermore the process can run at room tempera-
ture and in ambient atmosphere, which makes is cost-efficient and 
flexible. Various devices have been manufactured using printing 
processes, examples of which are OLEDs [6], organic photovoltaic 
devices [7] and RFID antennas [8]. The electrical contacts needed 
are often printed using silver or gold nanoparticle suspensions. 
After printing, a sintering step is needed to generate a conductive 
structure. The sintering takes places at elevated temperatures, typi-
cally above 150 °C, which limits the use of polymer substrates. 
Alternatively, sintering can be achieved by local laser irradiation, 
plasma or microwave exposure, broadband light sources or elec-
trical power [9]. These processes are compatible with low TG 
polymer substrates. 

In this contribution the use of drop-on-demand inkjet printing 
to generate electrode structures and piezoelectric polymer 
actuators for use in microfluidic lab-on-chip systems is discussed. 
Firstly, inkjet-printed gold and silver electrode structures on 
polymer substrates are presented. The structures are printed using 
commercially available nanoparticle inks and sintered using low-
pressure argon plasma. Secondly, all inkjet-printed EAP actuators 
are presented. The concept of a micropump with printed EAP 
actuators is discussed. 

Printed Electrodes for Lab-on-Chip Systems  
Currently electrodes for microfluidic lab-on-chip systems are 

often fabricated using lithography-based patterning and thin film 
processes like sputtering or electron-beam evaporation. Especially 
for single-use devices these processes are relatively cost intensive. 
Therefore digital printing techniques represent a promising 
alternative to generate conductive structures. Figure 1 shows an 
electrode pattern on a polymer substrate that has been printed 
using a commercially available silver nanoparticle suspension in 
ethanol and ethylene glycol (CCI-300, Cabot Corp.). Industrial 
piezoelectric printheads with a droplet volume of 30 pL are used 
(Galaxy 256/30, Fujifilm Dimatix Inc.) and positioned with a six-
axis robot (Kuka Robert GmbH). The electrode pattern includes 
lines with a width of 70 µm and several contact pads. The target 
application of the electrode pattern is chip-based electrophoresis. 
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As substrate material cyclo olefin polymer foils (Zeonor, TG 
136 °C) are used. In order not to damage the substrates, a low 
temperature sintering process using low-pressure argon plasma is 
employed. This transfers the printed features into conductive 
structures without damaging the substrate [10]. The sample 
presented here has been sintered at a relatively low RF power of 
150 W for 15 min yielding a resistivity of approximately 40 times 
the bulk silver value (ρ ≈ 65 µΩ cm). With higher powers or 
longer processing times the resistivity can be reduced. 

 

 
Figure 1. Inkjet-printed electrode layout for microfluidic applications, photo-
graph (upper) and profile (lower). 

Due to its antibacterial behavior, silver is not compatible with 
specific biological or chemical analysis processes. Therefore 
printing of gold nanoparticle inks is under investigation; results of 
printed and plasma sintered gold conductors are shown in Figure 2. 
A commercially available gold nanoparticle ink (NPG-J, Harima 
Chemicals Inc.) is printed on a PET substrate. Line widths of 70 to 
100 µm are realized. The resistivity of these structures is relatively 
high (ρ ≈ 2700 µΩ cm, corresponding to approximately 1100 
times the bulk gold value). Optimization of the process concerning 
line formation and conductivity is ongoing, it is planned to 
investigate laser sintering to increase the conductivity. 

 

 
Figure 2. Inkjet-printed gold electrodes on PET substrate. Argon plasma 
sintering is used to render the structures conductive. 

Inkjet-Printed Electroactive Polymer Actuators 
In almost all microfluidic systems a fluid needs to be 

distributed through the channels on the chip, thus a pumping 
function is required. In this section results on all inkjet-printed 
electroactive polymer (EAP) actuators that can be used to generate 
a pumping function are discussed. The actuators consist of an EAP 
layer that is sandwiched between two electrodes. All the active 
layers are inkjet printed onto polycarbonate substrates (PC, 
Makrofol, Bayer MaterialScience AG). The electrodes are printed 
using silver nanoparticle ink (CCI-300, Cabot Corp.) and sintered 
using argon plasma. For the EAP layers, a commercially available 
solution of piezoelectric polymers (solvene™, Solvay Solexis 
S.p.A.) is inkjet-printed. Printing is done in multiple layers; a final 
thickness of 10 to 15 µm is achieved. After printing, the polymer 
layers are cured at moderate temperatures of 130 °C to 140 °C. 
The samples are mounted as cantilever beams fixed mechanically 
at one end; a photograph is shown in Figure 3. 

 

 
Figure 3. Inkjet-printed electrode polymer (EAP) actuator mounted as a 
cantilever bending beam. [11] 

Prior to use the actuators need to be poled electrically to 
invoke piezoelectric behavior. This is done by applying a voltage 
of several hundred volts for few minutes. When an electric field is 
applied across the EAP layer, piezoelectric strain is induced that 
leads to a bending motion of the structure, comparable to a bi-
metallic beam. The static deflection of bending beams with lateral 
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dimensions of 8 × 25 mm² has been measured using a laser 
triangulation sensor. Results are displayed in Figure 4. For driving 
voltages of 600 V, deflections of more than 190 µm can be 
achieved. The resonance frequency has been measured with a laser 
Doppler vibrometer; the first resonance frequency of the structures 
presented is approximately 100 Hz. These results are promising for 
application of such actuators in a membrane pump. 

 

 
Figure 4. Static Deflection of an EAP actuator under static electric load. [11] 

A possible concept of a polymer-based membrane pump is 
depicted in Figure 5. The pump consists of a fluidic substrate made 
from polymer and a membrane with a printed EAP actuator. The 
substrate can be manufactured using standard polymer processing 
techniques like injection molding or hot embossing and features a 
pumping chamber, inlet and outlet channels and valve structures. 
These features are integrated in the mold. On top of the fluidic 
substrate, an actuator membrane with a circular inkjet-printed EAP 
actuator is mounted. When the EAP actuator is driven electrically, 
the membrane will deflect and the resulting volume change will 
lead to a pumping of the fluid from the inlet to the outlet channel. 

Based on the measurement results of cantilever-type bending 
actuators mentioned above, the deflection behavior of membrane 
actuators for use in a micropump is estimated. An analytical model 
[13] is employed to calculate membrane shape and deflection. 
Assuming membrane diameters between 5 mm and 10 mm, the 
central membrane deflection is calculated to range between 5 µm 
and 20 µm. These results are used to estimate the volume change 
and thus the pump performance. When driven at resonance 
frequency, a pumping rate of several 100 µL min-1 can be 
expected. 

 
 

 
Figure 5. Principle of a polymer-based micropump with printed EAP 
membrane actuator. [12] 

Conclusion 
The use of inkjet printing as a manufacturing tool for 

microfluidic lab-on-chip systems has been discussed. Results of 
inkjet-printed silver and gold metallization layers on polymer 
substrates are provided. A low-temperature argon plasma expose is 
employed to render the printed structures conductive. Furthermore, 
the use of all inkjet printed electroactive polymer actuators for use 
in a micro pump is suggested. Measurement results of cantilever 
bending beams are provided, test samples exhibit static deflections 
of more than 190 µm at 600 V driving voltage. Based on these 
results, a concept of a micropump with printed EAP actuators is 
presented. 
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