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Abstract
In this paper, we consider a dual-mode halftoning system for

electrophotographic printers; a low frequency halftoning for smooth
regions and a high frequency halftoning for detail regions. This
screen-switching approach has a stable halftone pattern in smooth
areas and preserves fine rendering in detail areas, but undesirable
jaggies may occur along the boundaries where the low and high
frequency screens meet. To reduce the jaggies, we propose a new
approach to blend two halftone patterns based on a transition re-
gion built around boundary pixels. In addition, we provide an im-
plementation methodology which requires simple structure, minimal
memory, and small processing time.

Introduction
Periodic, clustered-dot halftone patterns generated by screen-

ing with a threshold matrix [1–3] are generally considered to be the
preferred choice for printing with electrophotographic (EP) printers.
This approach has the benefits of yielding more stable printed pat-
terns than aperiodic, dispersed-dot halftoning methods, and is very
computationally efficient, since the halftoning is performed on a
pixel-by-pixel basis with simple comparison operations. However,
there is a tradeoff with periodic, clustered-dot halftones between us-
ing a coarser screen to yield more stable halftone patterns and using
a finer screen to yield better rendering of detail.

One way to take advantage of both aspects of this tradeoff is to
switch screens depending on the local content in the page to be ren-
dered. This screen-switching technique has a stable halftone pattern
that is artifact-free in smooth areas and preserves detail rendering
in detail or texture areas. This idea has been suggested by previ-
ous researchers such as Huang and Bhattacharjya [4] or Daly and
Feng [5]. However, one factor that limits the quality of the rendered
image is the appearance of artifacts at the boundaries between the
smooth and detail halftones. Switching between periodic, clustered-
dot halftones with two different frequencies may give rise to an ap-
pearance similar to the ”jaggies” along boundaries between smooth
and detail areas. Figure 1(a) shows an example of such a boundary
artifact. To overcome this disadvantage, we developed a novel al-
gorithm called seamless halftoning [6] that establishes a transition
region along the boundaries between the two types of halftones. The
two halftone patterns are blended in an appropriate manner in this
transition region.

After a brief review of the algorithm introduced in [6], this pa-
per focuses on the architecture and efficient implementation strate-
gies for the seamless halftoning, which are required to make it fea-
sible to use halftone blending in the hardware imaging pipeline of
a printer. The halftone blending algorithm may be implemented on
a pixel-by-pixel basis with minimal memory. However, computing

the distance d illustrated in Fig. 1(b) from the start of the transition
region on the smooth side to the current pixel (x,y) is a significant
challenge. We first describe an efficient strategy based on a sliding
window of pre-computed distance factors. However, if the desired
width of the transition region exceeds the number of lines of image
data that can be stored locally, this approach cannot be used. As an
alternative, we describe a multi-resolution approach in which a lower
resolution version of the local region in the page to be rendered, is
used to gain access to a larger spatial neighborhood centered at pixel
(x,y). Finally, we describe the generation of the lookup table (LUT)
for the boundary blending that contains the pair of gray levels of the
smooth and detail screens, as a function of the input gray level a and
the distance d to the object boundary.

Seamless halftoning
The basic idea of the seamless halftoning in [6] is that the

halftone pattern is produced by blending the two halftone textures
that result from the smooth and detail halftone screens in the transi-
tion region as illustrated in Figure 1(b).

(a) Boundary artifact
caused by object oriented
halftoning.

(b) Transition region for
blending halftone textures
from smooth and detail
screens.

Figure 1: Boundary artifact and seamless halftoning approach.

The principal operation of halftone blending is performed by
the following equation.

g(x,y) = max
{

h(S)(x,y),h(D)(x,y)
}
. (1)

At each pixel, there are a smooth halftone texture h(S)(x,y) and
a detail halftone texture h(D)(x,y), which are the outputs of a smooth
part gray level a(S) and a detail part gray level a(D), respectively. We
choose one of them by (1). In fact, a(S) and a(D) are not equivalent
to the real input gray level a from the continuous-tone image. Rather
(a(S),a(D))must be determined by a blending LUT based on the gray
level a from the continuous-tone image and the distance parameter
d of Fig. 1(b). The blending LUT is predetermined by an off-line
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training process before real time printing. Once the LUT is deter-
mined, we can perform the seamless halftoning process in printing
according to Fig. 2. When printing, we have the information of the
current pixel position (x,y) and the pixel value at this position from
the input continuous-tone image. From these two data, we get a and
d. The outputs of modules [Get a(S)] and [Get a(D)] are determined
under the following conditions. First, a(S) = 0 and a(D) = a when
(x,y) belongs to a detail object; and a(S) = a and a(D) = 0 when (x,y)
belongs to a smooth object. Second, in the transition region, a(S) and
a(D) are determined by the LUT. The screening process uses both a
smooth screening threshold t(S)(x,y) and a detail screening thresh-
old t(D)(x,y). Lastly, we choose one of the smooth halftone h(S)(x,y)
and the detail halftone h(D)(x,y) by (1). After saving the result to a
page buffer, we repeat this process at the next pixel until the last pixel
is processed. This flow diagram shows that the seamless halftoning
algorithm is well-suited to the embedded printer hardware in that it
follows a pixel-by-pixel process just like the normal screening pro-
cess.

Figure 2: Seamless halftoning flow diagram.

Distance Measurement in the Transition Region
We explained the two key factors of seamless halftoning in the

above section: the smooth and detail part gray levels a(S) and a(D),
and the distance d from the current pixel (x,y) to the start of the
transition region on the smooth side. In this section, we would like
to discuss the distance d. Before applying seamless halftoning at a
pixel position (x,y) in the transition region, we need to know where
are the boundary pixels in the neighborhood of (x,y). Once we get
the boundary pixel positions, we are able to decide the boundary
blending strength according to the distance to the boundary pixels.

Since we are using dual-mode halftoning, we assume we already
have an object map o(x,y) that determines for each pixel position
whether it is in a smooth or detail area. We apply the Sobel operator
to this object map to get the boundary pixel position map b(x,y).
Because o(x,y) has only two pixel value levels (smooth and detail
indicators), boundary pixels result when the pixel values change in
the Sobel window.

The next step is how to compute d. We have the input im-
age f (x,y), the object map o(x,y), and the boundary map b(x,y).
Although we do not know where the transition region starts, we
know the boundary position from b(x,y). Our strategy is to compute
db the distance between the nearest boundary point and (x,y) (see
Fig. 1(b)), and to find d based on o(x,y) and db. We consider that the
set of possible d values is {0,1,2, · · · ,dmax −1} i.e. at the transition
start location, d = 0 and at the transition end location, d = dmax −1.
Since boundary pixels always exist on both the smooth and detail
sides of the boundary as shown in Fig. 3(b), if we define ds to be the
distance between the smooth side boundary pixel and the transition
start, we have ds = dmax/2−1. And the distance between the detail
side boundary pixel and the transition start is ds +1 = dmax/2.

The most commonly used way to compute the distance between
two pixels (x1,y1) and (x2,y2) is the Euclidean distance defined by√

(x1 −x2)2 +(y1 −y2)2. In this paper, instead of directly comput-
ing Euclidean distance, we use a pre-computed distance window, W ,
because it is better suited to hardware implementation. We use W
to compute db. Since db cannot be greater than ds, we set the size
of the window to be {2ds +1} × {2ds +1}. The window is cen-
tered at (x,y); and each entry value of W is the Euclidean distance
from (x,y). Since we deal with only integers for computing d, since
db ≤ ds, each entry of W is defined as follows,

wi, j =

{[√
(i−ds)2 +( j−ds)2

]
R
, if
√

(i−ds)2 +( j−ds)2 ≤ ds

dmax, else
.

(2)

The operation [z]R denotes rounding of the argument z to the
nearest integer. In Fig. 3(a) we illustrate an example for the case
dmax = 6, for which the corresponding size of W is 5×5.

Figure 3: Use of distance window to efficiently compute parameter
db.

Figure 3(b) shows how we apply the distance window to com-
pute db. We superimpose W on the boundary map b(x,y). We find
the entries of W which overlap the boundary pixel. The value for db
is chosen as the minimum value among the entries of W that over-
lap the boundary pixel. The next step is the process for choosing d
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based on db and the object map o(x,y). The parameter db has one
value among 0,1,2, · · · ,ds, or dmax. The map o(x,y) has a value cor-
responding to either a smooth object (S) or a detail object (D). We
build a distance LUT with db and o(x,y) as inputs and d as the out-
put. If db = dmax, we consider that the current pixel (x,y) does not
belong to the transition region. Thereby we do either smooth-only
or detail-only halftoning. If 0 ≤ db < dmax, we choose d according
to the value of db; so that d increases from 0 at the smooth side of
the transition region start to dmax.

Low Resolution Approach
In the previous section, we described an approach to comput-

ing the distance db from the current pixel (x,y) to the nearest bound-
ary pixel that is based on superimposing a window W of precom-
puted distances on the object map. The window is centered at the
current pixel, and has dimensions equal to the width of the transi-
tion region. This method is computationally efficient and hardware-
friendly. But, in a stripe-based implementation, it would be expected
to require storage of a number of rows of the object map equal to the
width of the transition region.

In this section, we outline a method that uses a low-resolution
(LR) version of the object map to estimate the distance db. This ap-
proach can support a much wider transition region with much more
modest memory requirements. The concept is similar to that em-
ployed by Bernal et al [7] to estimate the width of a character stroke
or line containing the current pixel. In our case, 1 pixel in the low
resolution object map (LROM) is obtained from the average value
of 8× 8 full-resolution pixels. The original boundary position can
be approximated based on the LROM pixel values.

The LR approach needs additional information called the
LRBM (low resolution boundary map). The LRBM is obtained by
applying the Sobel operator to the LROM. To find boundary pixels,
three kinds of blocks in the LROM can be used: processing blocks,
boundary blocks, and reference blocks. The processing block is the
block which includes the current processing pixel. In Fig. 4, B5 is
the processing block. The boundary block is the block determined by
the LRBM. The dark gray blocks in Fig. 4 are the boundary blocks.
We set the boundary search range to be 3× 3 in the LROM; so a
boundary block must be one of B1 through B9 if one exists. If not,
we skip the blending algorithm and move to the next pixel. Ref-
erence blocks are dependent on the boundary block positions. Fig-
ure 4 shows the boundary and reference block pairs. For instance,
the corresponding reference block of B6 is R6 and the corresponding
reference block of B7 is R7.

Figure 4: Boundary/reference block pair and boundary direction.

We approximate two factors from the LR images: boundary

direction and boundary position. The boundary direction is deter-
mined by the boundary blocks. Figure 4 also shows the boundary
direction according to the boundary blocks. This means that we as-
sume the boundary direction is horizontal when the boundary block
is B2 or B8, vertical when the boundary block is B4 or B6, and di-
agonal when the boundary block is B1, B3, B7, or B9.

The boundary position can be approximated by boundary
blocks, as well. Once a boundary block is specified in Fig. 4, we
choose the processing block and reference block. Denote the pro-
cessing block value by P, the boundary block value by B, and the
reference block value by R. If a boundary pixel exists in the bound-
ary block, it can be assumed that the processing block and the refer-
ence block are different types of objects in the LROM. In addition,
considering that the LROM is based on the average value of full
resolution pixels, it can be assumed that the boundary block has an
intermediate value between P and R, i.e. P ≤ B ≤ R or R ≤ B ≤ P.

Now we define the proportion γ .

γ =

∣∣∣∣R−B
R−P

∣∣∣∣ . (3)

Because P ≤ B ≤ R or R ≤ B ≤ P, γ has a range 0 ≤ γ ≤ 1. If
γ is close to 0, this means γ is closer to R than to P. This leads to the
conclusion that the real boundary position can be considered to be
close to the processing block. On the contrary, if γ is close to 1, then
the real boundary position is considered to be close to the reference
block.

Based on the concepts introduced above, if there is an object
boundary in the vicinity of the current pixel (x,y), we can estimate its
angle relative to the current pixel, quantized to eight directions, and
its distance from the current pixel based on the relative difference
between the values of the processing block, the boundary block, and
the reference block. We use this information to estimate the distance
db from the current pixel to the nearest boundary pixel in the high-
resolution object map.

Design of Blending Lookup Table
Briefly reviewing the paper [6] which describes the basic idea

of seamless halftoning, the gray level a results in absorptance T (a)
after printing with the smooth screen, and the distance d determines
the ratio ρ(d) between the smooth part gray level a(S) and the detail
part gray level a(D). When a and d are given, we select (a(S),a(D))
and apply (1) to each pixel in the transition region so as to simultane-
ously satisfy T and ρ as nearly as possible. The main issue is how we
select (a(S),a(D)) so that blending pattern is as close to the original
T and ρ as possible when it is printed. What we can do is to choose
(a(S),a(D)) to have the minimum error between the ideal T (a) and
the real T (a(S),a(D)) and the minimum error between the ideal ρ(d)
and the real a(D)/a(S). Therefore, it is necessary to design and print
a training set of (a(S),a(D)) combinations before online printing and
to find the best blending pair based on a and d. This can be provided
in a table form with input (a,d) and output (a(S),a(D)). This is how
the blending LUT is constructed.

We define a cost function C = Φ+Ψ; and for each pair (a,d),
we find the pair (a(S),a(D)) that minimizes the cost function. Here,
Φ is the absorptance error cost and Ψ is the ratio error cost. The
solution can be expressed as
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θ̃ (a,d) = argmin
θ

{Φ(θ |a,d)+Ψ(θ |a,d)} , (4)

where θ = (a(S),a(D)) represents the blending pair. In this manner,
we determine the optimal blending pairs (a(S),a(D)) for all input
pairs (a,d), and store them in a blending LUT to be used during the
online printing process.

To characterize the absorptance response curves for the smooth
halftone screen and the blended halftone screens, we designed sets
of patch sheets, as illustrated in Fig. 5. Each patch corresponds to
an input gray value a for the smooth screen (Fig. 5(a)), or a pair
of input gray values (a(S),a(D)) for the blended smooth and detail
halftone screens (Fig. 5(b)). We print each sheet and measure the
average absorptance of each patch on the sheet. After measuring
the absorptance of these patches, we use a full search to find the
blending pair that minimizes the cost function among the blending
pair candidates (a(S),a(D)).

(a) Smooth halftone
only.

(b) Blended smooth
and detail halftones.

Figure 5: Patch sheets.

We base our measurement of the printed absorptance errors on
the device-independent 1976 CIE L∗a∗b∗ uniform color space [8].
We represent our absorptance values T (a) as the l2 norm distance in
ΔE(76)

a∗b∗ units between the color value of the printed patch and the
color value of the white paper. Denote the distance for the smooth
halftoning patch in Fig. 5(a) as Ts(a), and the distance for the blend-
ing halftoning patch in Fig. 5(b) as Tb(a(S),a(D)). The absorptance
error cost function Φ is then defined as the absolute difference be-
tween the smooth patch absorptance and the blending patch absorp-
tance shown in (5).

Φ = Φ(a(S),a(D)|a) =
∣∣∣Ts(a)−Tb(a

(S),a(D))
∣∣∣ . (5)

For the ratio error cost Ψ, we want to minimize the difference
between the target ratio ρ(d) and the actual ratio a(D)/a(S). How-

ever, we cannot simply choose Ψ =
∣∣∣ρ(d)−a(D)/a(S)

∣∣∣, because this

form for the cost function would not reflect the nonlinear ratio dif-
ference correctly. When ρ(d) < 1, it would be less sensitive to the
difference; and when ρ(d) > 1, it would be more sensitive to the
difference. Consequently, we define the ratio error cost as

Ψ=Ψ
(

a(S),a(D)|d
)
= log

(
max

[
a(D)/a(S)

ρ(d)
,

ρ(d)
a(D)/a(S)

])
. (6)

Note that Ψ is always greater than 0; and the best case is Ψ = 0,
which means a(D)/a(S) = ρ(d). The cost Ψ increases as the differ-
ence between ρ(d) and a(D)/a(S) increases. In addition, the log op-
erator limits the influence of very large values of the ratio a(D)/a(S),
such as a(D)/a(S) = 255/1.

By combining (5) and (6), we obtain the final cost function in
the form shown in (4). Now that we have the absorptance error cost
Φ and the ratio error cost Ψ, we can find the pair (a(S),a(D)) that
minimizes the cost function (4) given (a,d); and we store the result
to the blending LUT. We repeat this process over the range of input
levels a = 0,1,2, · · · ,255 and distances d = 0,1,2, · · · ,dmax −1.

Conclusion
In this paper, we have discussed an algorithm and implemen-

tation scheme to improve print quality for EP printers. We first
introduced a seamless halftoning approach to remove undesirable
boundary artifacts. Next we dealt with implementation issues, and
proposed a hardware friendly structure and low memory strategy
that is useful to characterize the boundary transition region when the
transition region is relatively wide. Last, we proposed a LUT-based
boundary blending technique based on an off-line training set.
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