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Abstract
With the increase in applications of inkjet functional print-

ing in recent years, the higher throughput associated with mul-
tiple nozzle arrays is necessary for large scale production. This
provides the motivation for designing print masks that can maxi-
mize the quality of inkjet printed devices rather than minimize the
number of print artifacts detectable by the human eye. The current
study builds upon earlier work by introduing a new drop coales-
cence cost function and by measuring the performance of print
masks resulting from the Print Mask Direct Binary Search via
image quality metrics including image mottle, raggedness, and
fill. Three print masks of differing expected quality are generated
and used to print rectangular solid fills. Overall, the results from
the printed samples are in agreement with the expected perfor-
mance of each of the three print masks. Discrepencies from image
size and image variability show limitations in the current study.
Future work will involve measuring the performance of the print
mask by measuring the performance of the device.

Introduction
For more than a decade studies [1–3] have shown that print

masks can be designed to alleviate print artifacts in inkjet printed
images by using the ability to simultaneously address any combi-
nation of nozzles in multi-nozzled printheads.

Early work [1] in this area has included the application
of halftoning techniques and super-smooth dithering matrices.
These tools were used to design two-pass print masks that elim-
inated banding and forced ink migration to spatial frequencies
above the human perceivable range. Subsequent work [2] cast
print mask design as a constrained optimization problem and de-
veloped a general mathematical framework to allow for the ap-
plication of different print modes, including multiple levels and
multiple drops per pixel.

With the increase in applications of inkjet functional printing
in recent years [4, 5], the higher throughput associated with mul-
tiple nozzle arrays is necessary for large scale production. This
provides the motivation for designing print masks that can maxi-
mize the quality of inkjet printed devices rather than minimize the
number of print artifacts detectable by the human eye.

A study recently proposed a print mask design [6] that mod-
ified the direct binary search algorithm to obtain a print mask
which minimized a cost function. With functional printing appli-
cations in mind, the researchers utilized the print mask direct bi-
nary search (PMDBS) to minimize a cost function considering oc-
currence of coalescence and drop placement error, as both of these
factors have the potential to affect device performance (e.g.s, open
or short circuits or non-uniform illumination in printed displays).

This study builds upon the work by Boley et al. [6] by a
new cost function for drop coalescence and by measuring the per-
formance of print masks resulting from the PMDBS via image
quality metrics. First, an overview of the PMDBS is presented,

including the constraint used to avoid passes with no nozzle fir-
ing, the drop placement cost function, and a modification of the
coalescence cost function. Next, the selection of quality metrics
used in this study are discussed. Then the experimental procedure
for obtaining the drop placement and drop radius distributions is
provided. Following, the print quality metrics resulting from solid
fill rectangles printed by three different print masks designed by
the PMDBS are provided and discussed. Last is a discussion of
the conclusions from this work.

Overview of the PMDBS
The purpose of this section is to provide the bare necessi-

ties of the PMDBS used for this study, namely the constraint in-
voked and cost functions to be minimized. A more complete de-
scription of the algorithm may be found in [6]. In general, the
PMDBS goes as follows. Given a print mode, a random initial
admissible print mask (PM) is generated and its associated cost
function evaluated. Next, the initial PM is copied and scanned
in raster fashion. For each element scanned the algorithm loops
through the set {1,2, . . . ,n}, where n is the total number of passes
in the print mode, and computes the cost associated with the PM
if the scanned element were changed to one of the elements in
{1,2, . . . ,n}. If the cost decreases and the resulting PM satisfies
the constraint(s), then the change is made to the copy of the initial
PM, the cost function is recorded, and scanning is continued until
the last element in the initial PM is reached. Once scanning is
complete, the resulting PM is compared to the PM prior to scan-
ning. If they are the same, then the algorithm has converged and
the resulting PM is a local minimizer of the cost function. Oth-
erwise, the algorithm sets the resulting PM to be the initial PM
and the algorithm scans again. Since the result of the PMDBS is a
local minimizer, the algorithm can be run multiple times to obtain
a better sense of a global minimizer. The remainder of this section
will discuss the constraint and cost functions used for this study.

Avoiding Passes With No Nozzle Firings
In order to reduce energy consumption with unused stage

motion and to decrease nozzle idle time the following constraint
is applied so that nozzle firing occurs during each pass [6].

⋃
i, j

{PM(i, j)}= {1,2, . . . ,n}; (1)

where i = 1,2, . . . , p1, j = 1,2, . . . , p2, p1 is the number of rows
in PM, and p2 is the number of columns in PM.

Drop Placement Cost Function
As described in [6], let γdp be a weighting on the drop place-

ment, εq1q2wd p be the relative biased drop placement error between
the nozzle responsible for printing image pixel (q1,q2) and the
nozzle responsible for printing neighbor pixel wdp, where wdp is
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Figure 1. Neighborhood of Interest for Image Pixel (q1,q2).

an image pixel contained in the smaller neighborhood nhddp of
(q1,q2) denoted by dashed lines in Fig. 1. Let σx2

q1q2
and σy2

q1q2

be the variance of the drop placement associated with the nozzle
that prints image pixel (q1,q2) in the print-head scan and media
advance directions, respectively. Let σx2

wd p
and σy2

wd p
be the vari-

ance of the drop placement error associated with the nozzle that
prints neighbor wdp in the print-head scan and media advance di-
rections, respectively. Then the image pixel (q1,q2) and neighbor
wdp dependent cost function for drop placement is

fdp(q1,q2,wdp) =

γdp ∑
wd p∈nhdd p

(
εq1q2wd p+

√
σx2

q1q2
+σy2

q1q2
+σx2

wd p
+σy2

wd p

)
.

(2)

To clarify the notation, it should be noted that given a print
mode and a PM, the nozzle responsible for depositing ink onto
each image pixel is determined [7]. It should also be noted that
for a given print mode the pixel resolution and the drop deposition
time are known as well [6,7]. Therefore, when we say that some-
thing depends on the image pixel for a given PM and print mode,
it is equivalent to saying that it depends on the nozzle assigned
to the image pixel as well as the time of deposition and physical
location of said pixel.

Coalescence Cost Function
There are a couple of modifications to the coalescence cost

function that this paper is making. The first is an increase in
neighborhood size for each image pixel (q1,q2). The second is
the cost function itself.

Previously, [6] only considered the the dashed-line neighbor-
hood in Fig. 1. However, due to drop placement error and the fact
that the drop radius is typically larger than the image resolution,
a larger neighborhood should be considered.

The coalescence cost function in [6] is a measure of how
early adjacent drops are deposited relative to a minimum waiting
time for a prescribed allowable occurrence of coalescence. How-
ever, it is easier to interpret a cost function that reports the proba-
bility that a drop deposited onto an image pixel will coalesce with
one of its neighbors.

Let rnhd be the maximum number of pixels away from any
image pixel that has a non-zero probability of coalescence for any
nozzle pair combination. Let γc be a weighting on drop coales-
cence and wc an image pixel contained in the large neighbor-
hood nhdc of radius rnhd shown in Fig. 1. Assuming coalescence
among each neighbor to be independent, the image pixel (q1,q2)
and neighbor wc dependent cost function for drop coalescence is
a weighting on the probability that the drop deposited onto im-
age pixel (q1,q2) will coalesce with any of its neighbors in nhdc,
written as

fc(q1,q2,wc) = γc

(
1− ∏

wc∈nhdc

(1−Pq1q2wc)

)
; (3)

where Pq1q2wc is the probability that the drop deposited onto image
pixel (q1,q2) will coalesce with a drop deposited onto image pixel
wc.

The cost fuction for a given PM can now be written as

f =∑
Q

(
fdp(q1,q2,wdp)+ fc(q1,q2,wc)

)
; (4)

where Q is the set of all image pixels.

Image Quality Metrics Used
There are many attributes given in [8, 9] that measuere the

quality of a given image. Rather than including all measures, three
attributes naturally thought to be indicative of device performance
were chosen from [8]. These three image quality attributes are
mottle, raggedness, and fill. This section gives a brief description
of these attributes and discusses how they can relate to functional
printing.

Mottle
Mottle as defined in [8] as irregular spatial patterns with fre-

quencies less than 0.4 cycles per mm in every direction. To com-
pute mottle, the region of interested as defined by [8] is divided
into at least 100 uniform, non-overlapping square tiles. The mot-
tle is then obtained by taking the standard deviation of the average
optical density over all tiles. Further investigation has shown that
mottle can be reported in terms of the grayscale value (GSV),
mottle is a function of the tile size, and that mottle is an indicator
of the occurrence of coalescence within an image [10]. Therefore,
the mottle method proposed in [10] has been chosen to measure
PM performance in this paper.

Raggedness
Raggedness is described in [8] as the standard deviation of

the residual error perpendicular to the best fit edge threshold. This
attribute was chosen because the raggedness of a line can affect
the performance of a printed device (e.g., two adjacent conductive
traces in close proximity are less likely intersect if they have low
raggedness).

Fill
The third attribute used in this study is fill. It is defined [8] as

the ratio of the area within the region of interest that has a relative
reflectance of at least 75% to the total area of the region of interest.
Fill is a measure of image homogeneity, which is important in
printed devices such as displays [11].
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Figure 2. (Left) Photograph of inkjet system consisting of 1.Motorized XY

stage, 2.Thermal drop ejector, 3.CCD camera, and 4.Laser sample regis-

tration system. (Right) Schematic of the print-head geometry(Drop into the

page). Directions are labeled in each to show relative orientation.

Procedures

The purpose of this section is to describe the inkjet system
used in the study, provide the methods used for characterizing
the drop placement and drop radius distributions, and to briefly
explain how the model for drop coalescence is obtained.

System Description

The inkjet system used for conducting experiments for this
study is shown in Fig. 2. The motion system consists of an XY
stage (Anorad-XKY-C-150-AAA0), which uses DC servo driven
permanent magnet epoxy core linear motors for independent mo-
tion in both axes. The motion is controlled by a SPiiPlus Series
Stand Alone controller, with linear encoder feedback of 0.5μm.

The drop ejection system used is provided by HP R©, uti-
lizes thermal inkjet technology, and offers print-heads with k =
10,12, or 16 nozzles. The nozzle orifices range from 8.0μm to
80.0μm. The print-head used for all experiments had k = 12 noz-
zles with a nominal orifice diameter of 67μm.

The system also includes a Sony R© XC-ST50 charged cou-
pled device (CCD) camera for viewing during deposition and a
laser sample registration system for mapping out edges of a sub-
strate [12].

All experiments conducted involved printing an 100mM so-
lution of Pd hexadecanethiolate thiolate in toluene, which has
previously been used to print metal interconnects and surface-
enhance Raman scattering substrates [13]. The substrates em-
ployed for the experiments were Si wafers. All images were
printed with unidirectional printing at a print-head scan speed
of 1mm/s, a media advance speed of 1mm/s, a print-head re-
turn speed of 45mm/s, and a standoff distance of approximately
250μm from the substrate. An Olympus BX-60 microscope was
used to capture printed samples.
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Figure 3. Input image designed for obtaining print-head nozzle locations

and drop placement and radius distributions.
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Figure 4. Printed image resulting from input image Fig. 3. Each column

is labeled with its corresponding nozzle. Directions are labeled to aid in

orientation. Scale bar is 200 μm.

Characterizing Drop Placement and Drop Radius
Distributions

Initial experiments were conducted in order to find the drop
placement and drop radius distributions, the nozzle column spac-
ing a, the nozzle resolution b, and the coalescence neighborhood
radius rnhd required for the PMDBS. The image shown in Fig. 3
is the input image designed to obtain the aforementioned data.
Black pixels correspond to pixels with ink and white corresponds
to ones without ink. Each black pixel is labeled with the nozzle
responsible for depositing ink onto it.

The resulting printed image, Fig. 4, was analyzed using
MATLAB to find the centroid and radius of each drop. The drop
centroids were found using an algorithm by Bernal et al. [14] and
are shown in Fig. 4 (black squares) superimposed onto the printed
image. The drop radii were found using a simple least squares
algorithm by Chaudhuri [15]. The black dashed-line circles fea-
tured in Fig. 4 were generated using the centroid and radius for
each drop obtained from the analysis.

In order to obtain the distributions a 3×3 array of the input
image in Fig. 3 was first printed. Secondly, the centroid and ra-
dius for each drop in the printed image were obtained. From here
the the relative drop placement distributions for each nozzle (see
Fig. 5(a)) and the radius distribution (see Fig. 5(b)) were easily at-
tained. Taking the average relative position in the print-head scan
direction over all drop placement distributions resulted in a nozzle
column spacing of a = 266.01μm. Using MATLAB’s polyfit for
the mean of the relative drop placement distribution in the media
advance direction for each nozzle resulted in a nozzle resolution
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of b = 70.25μm. Considering the worst case scenerio, the coales-
cence neighborhood radius is found to be rnhd = 3 pixels.
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(b) Histogram of experimentally obtained drop radii including all
nozzle for all trials. Data outside of three standard deviations have
been removed.

Figure 5. Experimentally obtained drop placement and radius distributions.

Coalescence Modeling
A lookup table was generated that contains time and proba-

bility of coalescence vectors for each nozzle pair combination for
each possible neighbor, wc ∈ nhdc. The time and probability of
coalescence vectors were obtained using the stochastic model of
coalescence on non-porous substrates described in [16,17], which
considers coalescence to occur when the wetted areas of two de-
posited drops intersect, resulting in the merging of the two drops
into one drop via surface tension. The locations and initial vol-
umes of the deposited drops are random, making coalescence a
stochatic event. An optimal combination between two modes of
sessile drop evaporation (constant contact angle and constant con-
tact radius) [17] of the initially deposited drop is the physical phe-
nomenon causing the event of coalescence to change with time.

Summary of PMDBS Cost Functions

Pass Drop
Number Coalescence Placement(mm)

2 34.26 43.03

3 9.82 43.33

4 4.78 42.89

Image Quality Results and Discussion
The print mode parameters constant for all image quality ex-

periments are as follows:

• Print-head scan speed, 1mm/s
• Unidirectional printing
• Media advance speed, 1mm/s
• Print-head return speed, 45mm/s
• Nozzle resolution, b = 70.25μm
• Image resolution, 70.25μm/pixel
• Ink, 100mM solution of Pd hexadecanethiolate in toluene
• Substrate, Si wafers
• Distance between nozzle columns, a = 266.01μm
• Print Mask size, 4 rows ×4 columns
• Radius of coalescence neighborhood, rnhd = 3 pixels
• Image, 15×8 filled rectangle.

The PMDBS was run 20 times for three different pass numbers
(n = 2,3,4) with γc = 1 and γc = 0.001. The PM resulting in the
lowest cost function for each case was

PM2 =

⎛
⎜⎜⎝

1 2 1 2
1 2 2 1
2 1 2 1
2 1 1 2

⎞
⎟⎟⎠ ,PM3 =

⎛
⎜⎜⎝

1 2 1 3
1 2 3 1
3 1 3 2
3 1 2 1

⎞
⎟⎟⎠ ,

and

PM4 =

⎛
⎜⎜⎝

4 2 4 2
3 1 2 4
2 4 1 4
1 3 4 1

⎞
⎟⎟⎠ ;

where the subscript for each PMi denotes the number of passes.

Results and Discussion
The summary of the resulting cost functions for each print

mask is shown in Table 1. Upon inspection of the resulting cost
functions, it is clear that the coalescence cost function varies more
than the drop placement cost function across the three print masks
with the largest change occurring between pass numbers 2 and 3.
This is in agreement with the printed images as it appears that the
largest reduction in occurrence of coalescence happens between
pass numbers 2 and 3. Following the conversion of the images
in Fig. 6 to grayscale values, image analysis was performed to
exctract mottle, raggedness, and fill.

Mottle was obtained for tile sizes ranging from 2μm up to
152μm as it is known that mottle is sensitive to tile size [10].
The results for mottle are shown in Fig. 7. In comparing mean
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Figure 6. Images printed using PM4(Left Column), PM3(Middle Column),

and PM1(Right Column). The calibration bar is 200μm.

mottle values for each PM to the printed images it is clear that
mottle indeed increases with coalescence as observed by Jones et
al. [10] and furthermore that the same trend visible between the
coalescence cost functions and the printed images can be seen in
the mean mottle values. In only one case (tile size of 112μm) is
the mean mottle for PM3 smaller than that for PM4. The mottle
variability across images also changes with tile size. Further in-
vestigation shows that tile sizes smaller than 32μm (32 pixels per
tile) still show a significant mottle difference between PM4 and
PM3, which is in line with observations of the printed images.

The results of raggedness (in μm) and fill are summarized
in Table 2. Comparing the mean value of these results does in-
deed show agreement with the result from mottle from viewing
the printed images and from the cost functions resulting from the
PMDBS. However, the sensitivity is not as large compared to the
lower tile sizes of mottle. The variability across images makes it
difficult to use raggedness or fill as a comparison between PM3
and PM4 or PM2.
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Figure 7. Mean value of mottle of the two images printed for each print

mask. Length of errorbars is two standard deviations.

Limitations and Future Work
Overall, the results from the printed samples and the image

quality measurements are in agreement with the expected perfor-

Summary of Image Quality Results

Top Image Bottom Image

Pass
Number Raggedness Fill Raggedness Fill

2 35.68 0.84 34.31 0.87

3 25.37 0.88 38.41 0.93

4 30.44 0.92 26.77 0.91

mance of each of the three print masks. However, there seems
to be some discrepencies coming from image variability for all
image measurements and tile size for mottle. These discrepen-
cies are most likely due to the limited image size. In order to
obtain a more sensitive comparison of print mask perfomance, fu-
ture work will be to measure the performance of the actual printed
device (e.g., the resistivity of a printed conductor). Due to limited
memory space on the drop ejection controller for nozzle config-
urations, the maximum number of passes was 4. Current work
is being done to increase this number to show results of higher
performing print masks.

Conclusions
In closing, the proposed PMDBS is in agreement with the

quality of the images and the resulting image quality metrics that
were proposed. Discrepencies most likely from image size and
variability across images for a given PM show the need for a more
sensitive comparison of print mask performance. Future work in-
volves comparing print mask performance by comparing the re-
sulting devices’ performance. Future work also includes increas-
ing the number of nozzle configurations that can be loaded onto
the drop ejection controller so that larger images can be printed
and higher quality print masks can be used.
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