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Abstract 

Ultrathin porous membranes can be employed for 
applications in the field of micro- and ultrafiltration and offer a 
low flow resistance. However, due to their thickness below 1 µm 
they are very fragile. Therefore, we recently reported on a process 
to increase the mechanical stability by inkjet printing of UV 
curable inks to create reinforcing patterns on top of these 
membranes [1]. Based on this laboratory approach we realized 
now a specific inkjet printing system to apply the process 
efficiently on larger areas. 

The membranes are first manufactured on a water surface in 
a Langmuir trough [2]. Therefore, the inkjet system realized here 
is composed of a 3D motion system for a multi-nozzle printhead 
and a UVLED-lamp. In order to prevent waves leading to 
undefined displacements of the floating membranes the filled 
trough is stationary while the printhead and the UVLED-lamp are 
moved. The positioning stages have a high accuracy and enable a 
precise movement of the printing and UV curing device relative to 
the membranes. Deviating from previous procedures that needed 
intermittent support of the porous membrane by a solid support, 
the reinforcing patterns now are created directly on top of the 
floating membranes. Deposition is done by multiple motion 
procedures combined with triggered printing and UV curing 
events. The patterns can be deposited in several minutes with 
resolutions of up to 800 dpi covering an area of about 130 cm². 
While the porous membranes before application of reinforcement 
pattern are very fragile, the reinforced porous membranes are 
stable enough to be lifted off the water surface and handled 
manually without special precautions. 

Introduction 
Today, printing technologies are not only used for graphical 

applications, but also as manufacturing methods for thin and 
flexible devices like batteries, sensors, organic light-emitting 
diodes, antennas or micro-3D patterns [3-7]. The applied inks have 
certain non-graphical properties to build layers with specific 
functionalities. The development and manufacture of such printed 
devices starts small scales in scientific laboratories. When the 
developed processes have to be transferred to industry-related 
manufacturing systems, the applied machines mostly customized to 
the process parameters. 

Following, this approach is demonstrated by the 
manufacturing process of reinforced thin porous membranes. The 
basis for this report is a process which was developed on 
laboratory scale [1] in which inkjet printing was applied to print 
pattern reinforcing fragile microsieves mechanically. The 
microsieves were fabricated by float casting [8] in a Petri dish. 

Thus, the microsieves have a thickness less than 1 µm, a uniform 
pore size and distribution as well as a higher pore diameter 
compared to the thickness. Hence, for filter applications like blood 
filtration and human cell filtration, microsieves have excellent 
characteristics in high selectivity and a minimum of flow 
resistance. However, due to the low thicknesses they are very 
fragile. To increase the mechanical stability reinforcing 
honeycomb patterns were printed on top. This was done with the 
small format printer Fujifilm Dimatix DMP2831 using 1 nozzle of 
the printhead. The summarized manufacture of a reinforced 
microsieve with an area of 1 cm² lasted approximately 2.5 hours. 
The following developed inkjet system was designed to increase 
the manufactured area while simultaneous decreasing the 
manufacturing period. 

Concept of the Machine and Printing Process 

Process Development 
 The process steps to manufacture reinforced porous 
membranes on laboratory scale are as follows [1] (figure 1 a-f): 

(a) A suspension consisting of monomer, particles and 
organic liquids spreads on a water surface in a Petri 
dish. 

(b) A UV-radiation curing of the liquid film on top of the 
water surface resulting in a thin polymeric monolayer 
with embedded particles with hexagonal dense packing. 

(c) A carrier substrate (aluminum foil) is used to lift off the 
pre-finished microsieve from the water surface and 
subsequently print honeycomb patterns on top using a 
small format inkjet printer and a UV-curable ink.  

(d) Curing the ink manually with a separate UVLED-lamp. 
(e) Etching of the carrier substrate using a hydrochloric acid 

solution 
(f) Etching of the embedded particles using hydrofluoric 

acid in an encapsulated system 
For a industry-related manufacture the following process- and 
equipment amendments were done: 
 

• For the microsieve manufacturing a Langmuir Trough 
System KSV 2000 from KSV Instruments Ltd. instead 
of a Petri dish was applied to increase the 
manufactured area. 

• Usage of a multi-nozzle inkjet printhead to speed up the 
printing process. 

• Automated usage of an UVLED-Lamp for curing the 
suspension as well as the printed patterns. 
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• Printing of the reinforcing pattern directly on top of the 
floating membrane to avoid the transfer to an carrier 
substrate and whose etching (figure 1 c*-d*). In 
laboratory scale, this was the most critical process step 
where the pre-finished microsieve could be damaged. 

 

 
Figure 1 Fabrication process of a microsieve by float casting. a) Spreading a 
suspension onto a water surface. b) Polymerization by UV-curing. c) Usage of 
a carrier substrate and printing of a pattern on top. d) UV-curing of the pattern. 
e) Remove of the carrier substrate. f) Etching of the particles. c*) Printing of a 
pattern directly onto a floating microsieve d*) UV-curing of the printed pattern. 

Experimental Setup - Printing System 
To realize the optimized manufacturing process the developed 

printing system (figure 2 d) has to fulfill certain important 
conditions. A Fujifilm Dimatix Galaxy AAA 256/50 inkjet 
printhead was inserted and was suitable for the chosen UV-ink. 
The printhead has 256 nozzles arranged in a line with 254 µm 
nozzle spacing. Each nozzle has a diameter of 42 µm which 
allows generating drops with volumes of 50 pL, respectively. For 
curing the UVLED-lamp RX FireFlex from Phoseon 
TECHNOLOGY with a wavelength peak at 395 nm was 
deployed. For both, UV-lamp and printhead, a dedicated holding 
fixture with a shutter unit to protect the printhead nozzles against 
UV-radiation was developed (figure 2 a-c). 

The substrate for the process is a membrane floating on a 
water surface. To enable a precise manufacture of the reinforcing 
patterns on top, no waves should be formed. Hence, the Langmuir 
Trough cannot be moved. Instead a 3-dimensional motion system, 
consisting of 3 linear stages with high accuracies, was applied to 
move both the UV-lamp and the printhead (table 1). 

Table 1 Properties of the 3-dimensional motion system 
Direction Description Travel 

length 
Velocity 
[mm/s] 

Accuracy 
[µm] 

PD 
M414-K012 

(Physik 
Instrumente) 

500 100 ±5 

CD 
UTS 50CC 
(Newport 

Corporation)

50 20 ±1 

Vertical 
M414-2PD 

(Physik 
Instrumente) 

200 100 ±5 

 
 

 
Figure 2 CAD-model of the developed inkjet printing system. a) Exploded view 
of the holding fixture. b) Side view of the holding fixture with UV-lamp and 
printhead inserted. c) Top view. d) CAD assembly of the Printing System. 

The drop spacing in printing direction is defined by the velocity (v) 
of the linear stage M414-K012 and the drop ejection frequency (f) 
of the printhead: 

v ÷ f = DS (1) 

The drop spacing perpendicular to printing direction is achieved by 
the offset of the linear stage UTS 50CC. The distance between the 
floating membrane and the nozzle plate is adjusted by the vertical 
linear stage M414-2PD. 

Preparation of the Pattern 
The printed pattern consists of printed lines in form of 

honeycombs. The primary properties of the line dimensions are a 
small width and high thickness to achieve an adequate mechanical 
stability at a low area-covering. Preliminary investigations have 
shown that the line morphology of "Stacked Coins" [10] features 
this dimensions. Therefore, it was necessary to print Wet-In-Dry, 
which means a printing and subsequently curing of single droplets 
without coalescing of uncured droplets. To achieve that behavior 
and to decrease the drop space in CD, the digital printing pattern 
has to be divided and printed over several printing. 

Figure 4 schematically shows the preparation of the digital 
printing images and the Wet-in-Dry printing based on a 
honeycomb pattern with 127 µm drop spacing. First, a pixel based 
digital image is separated into 2 images shown as black and red 
pixels (figure 3 a). Next, the first printing step prints the black 
image, by moving the printhead in PD (figure 3 b) with a defined 
velocity and drop ejection frequency calculated by Eq. 1. Through 
the positioning of the digital printing image referred to CD and PD 
the drop space of the printout is high enough to prevent coalescing 
of the uncured droplets. Subsequently, the printout is cured by 
back driving the disabled printhead and the enabled UV-lamp 
(figure 3 c). During this period the shutter unit is closed to protect 
the nozzles against UV-radiation. After the first printing step, the 
printout has a drop space 254 µm in CD, equal to the nozzle 
spacing. To decrease the drop space to 127 µm in CD a next 
printing step of the red pixel printing image will be done. 
Therefore a 127 µm deposition of the printhead in CD is necessary 
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(figure 3 d). Following, a further curing step is done, similar to the 
previous one (figure 3 e). This approach is scalable to lower drop 
spaces and can be calculated by: 

254 µm ÷ DS [µm] = n (2) 

where n is the number of printing steps and DS is the desired drop 
space as well as the deposition of the printhead in CD after each 
printing step (Eq. 2 is only valid when DS is a divider of 254 µm). 
 

 
Figure 3 Schema of the used printing process for a 127 µm drop space. a) 
Digital printing image. b) First printing step. c) UV-curing of the first droplets. 
d) Second printing step. e) UV-curing of the second droplets. 

Experimental Setup 
The suspension for the float casting process consists of the 

following components: 
 

• Silicon dioxide particles with 3-
(Methacryloyloxy)propyltrimethoxysilane coating; 1 % 
by weight of the suspension 

• Trimethylolpropane trimethacrylate and Hyperion Pro 
Wet Black ink; ratio: 1:1; 1: 3 ratio related to the particle 
weight 

• Ethanol, Trichloromethane and Ethylbutyrylacetate; 
ratio: 50:49.5:0.5 [%] 

The Langmuir trough was filled with water. By using a syringe the 
suspension spreads onto a water surface of 270 cm² between 2 
barriers. Subsequently, the barriers were automatically moved 
against each other to compress the suspension to an area of 
202 cm² and to form a hexagonal dense packing of the particles. 
Following, the suspension is cured over 8 minutes. Finally, the 
barriers were removed and the free edges of the pre-finished 
microsieve were fixed using 2 strings. 
 A honeycomb pattern were printed at a theoretical drop space 
of 42,3 µm, a drop ejection frequency of 600 Hz and a printing 
velocity of 25.4 mm/s. Additionally, to enlarge the thickness of the 
lines, 4 printing layers were applied on top of each other. The 
curing process took approximately 6 seconds at a vertical distance 
of 100 mm. The printing distance between the floating membrane 

and the nozzle plate was 3 mm. The size of the printout was 6.5 cm 
x 20 cm. 

Results and Discussion 
The designed manufacturing system was successfully 

assembled and installed shown in figure 4. Using this machine the 
developed manufacturing process can be carried out.  

 

 
Figure 4 The assembled inkjet printing system 

The machine enables a manufacturing of a porous pre finished 
microsieves and a printing of reinforcing pattern directly on top of 
this floating membrane at a water surface in one device. The 
fabrication period was decreased to 40 minutes for an increased 
area of 130 cm². Furthermore, the lift up of a unprinted compared 
to imprinted microsieve proves the reinforcing effect of the printed 
pattern on top of the microsieve. While the blank microsieve is 
completely destroyed during the lift up (figure 5 a-b), the 
reinforced microsieve was successfully removed from the water 
surface (figure 5 c-d). 
 

 
Figure 5 a) Unprinted microsieve during the lifted up from the water surface 
using a thin metal bar. b) Unprinted microsieve after lifted up. c) A reinforced 
microsieve during lifted up from the water surface d) A reinforced microsieve 
after lifted up. 

Before and after removing the particles from the microsieve, the 
printed pattern remained without broken or cracked lines (figure 6 
a-b). However, in both pictures inhomogeneous line morphologies 
are visible. Possible reasons for this issue are: 
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• a high printing distance between nozzle plate and 
microsieve which results in imponderable deflections of 
flying drops 

• a movement of the floating microsieve evoked by small 
waves in the range of micrometers 

• repeating accuracy of the linear stages 
• airstreams, generated during the movement of the 

printhead and the UV-lamp 
 

 
Figure 6 Scanning electron microscope images of stabilized microsieves. a) 
Honeycomb pattern on a pre-finished microsieve. b) Backside of an etched 
microsieve with a Honeycomb pattern 

Additionally, the removing of the particles from the microsieve 
causes defects and rifts in the range of micrometers. Possible 
reasons are the curing duration of the prefinished microsieve, the 
manually spreading process using a syringe as well as the 
components and the composition ratio of the suspension.  

Conclusion 
An manufacturing system was successfully developed, 

designed and assembled, to optimize the manufacture of stabilized 
microsieves. A particular feature of the system was to print pattern 
directly on floating microsieves. Therefore, the critically process 
steps (usage of a carrier substrate to transfer the pre-finished 
microsieve to a separate small format inkjet printer; additional 
etching process of the carrier substrate) of previous laboratory 
scaled fabrication was avoidable. Furthermore, by the usage of an 
industrial multi-nozzle printhead, a UVLED-lamp, a Langmuir 
Trough System and a high precise 3-dimesional motion system 
consisting of 3 linear stages the fabrication time was distinctly 
decreased to approximately 40 minutes for an area of 130 cm². An 
unscathed lift off of the imprinted pre-finished microsieve from the 
water surface is now possible and demonstrates the reinforcing 
effect of the printed pattern. Beyond, the removing of the particles 
has no negative effect onto the printed pattern. However, by 
microscopic examinations of the printed structures inhomogeneous 
line morphology was ascertained. Therefore, possible reasons are 
the high printing distance between nozzle plate and microsieve, a 
deposition of the microsieve during the printing process, airstreams 
generated by the movement above the microsieve and the repeating 
accuracy of the linear stages. Furthermore, after the etching of the 

particles non uniform pore sizes and rifts in micrometer scale are 
visible. Further investigations and optimizations have to be done to 
solve these problems. 
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