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Abstract 

Contact angle measurement is a common method to define 
wettability and liquid-substrate interactions. Since inkjet printing 
is based on ejection of separate ink droplets on substrate, contact 
angle measurement is commonly utilized to characterize ink-
substrate interactions in inkjet printing. However, the droplet size 
in contact angle measurements is typically in microliter scale, 
whereas picoliter droplets are used in inkjet printing. In this work 
an experimental comparison between micro- and picoliter droplets 
to evaluate the influence of droplet volume on contact angle has 
been made. Wide range of liquid surface tensions on porous inkjet 
paper and non-porous polymer substrates were tested.  

Introduction  
Major advantage of inkjet technology is its versatility: almost 

any kind of substrates can be used, such as porous, non-porous, 
irregular and fragile substrates [1]. A sufficient ink-substrate 
adhesion is crucial to ensure good print quality. Surface tension of 
the ink and surface free energy of the substrate are in key roles to 
ensure good adhesion. Both of these can be modified to promote 
better adhesion, if it is not in sufficient level with preferred ink-
substrate combination. 

The ink-substrate adhesion can be assessed with contact angle 
measurements. Low contact angle shows good wettability and 
indicates sufficient adhesion. Contact angle is also one of the most 
sensitive of all surface analytical techniques since only the top 
nanometer of the surface influence on the initial wetting behavior 
[3]. As inkjet printing is based on separate ink droplets, contact 
angle measurement represents well real life ink-substrate 
wettability. However, typically microliter droplets are utilized in 
the sessile drop method, whereas the picoliter droplets are used in 
inkjet printing. In microliter scale it has been known already many 
years that the effect of droplet size on contact angle depends on 
substrate homogeneity [2]: The effect of droplet size becomes 
more relevant when surface heterogeneity and roughness 
increases, as it is well-known that contact angle value is depended 
both on surface chemistry and roughness. It has been also showed 
that an advancing contact angle is less depended on the droplet 
size compared to a receding angle [2].  

In recent years, the interest towards to the picoliter droplets 
has increased due to emerging inkjet technology. Base diameter of 
microliter droplets is typically larger than 1 mm, whereas with 
picoliter droplets the base diameter is in micrometer scale. Thus, 
small picoliter droplets enable also surface characterization of 
novel micropatterned surfaces and single fibers. Therefore, 
discussion about the effects of droplet size on contact angle has 
broadened to compare microliter droplets to picoliter droplets. 
Influence of gravity on the droplet and the rate of the drop size 

reduction due to evaporation are the two major differences 
between pico- and microliter droplets [3]. When the droplet 
volume increases, the larger the influence of gravity becomes. 
Understanding the fast evaporation phenomena of picoliter 
droplets is also important to be able to control the drying process 
in inkjet printing applications. Berson et al. [4] showed that 
contact angle value has significant effect on this evaporation 
behavior of picoliter size water droplets.  Droplet mass was shown 
to decrease linearly when initial contact angle is small, whereas 
decrease was not linear with larger contact angles. Some studies 
have already showed comparison between pico- and microliter 
droplets: Taylor et al. [3] demonstrated that picoliter volume water 
droplets were comparable with those obtained from microliter 
volume water droplets on a group of commonly used smooth 
polymer surfaces. They studied the contact angle behavior as a 
function of time using high-speed camera. With microliter droplets 
the contact angles were stable with time, excluding the mobile 
hydrogel polymer surface with which water chemically reacted. 
With picoliter droplets contact angle decrease with time occurred 
in two stages; fast evaporation and spreading during the first 0.5 s, 
and then slower stage until it reached the receding value. Thus, 
contact angle versus time curve indicates also hysteresis of the 
substrate with picoliter droplets. The initial contact angle value of 
picoliter droplets correlated well with the microliter droplet 
contact angle values and was also close to literature value. Taylor 
et al. [3] demonstrated also that with larger droplets and greater 
influence of gravity, droplet profile fitting model needs to be 
chosen with care. With picoliter droplets, both Young-Laplace and 
circular fitting can be used as the free energy of the system at 
equilibrium is minimized for a spherical shape [3]. With larger 
droplets (>1ul) the circular fitting became inaccurate and Young-
Laplace model was shown to give constant value as a function of 
droplet volume. Yang et al. [5] compared pico- and microliter 
droplet water contact angles on grooved polymethyl methacrylate 
(PMMA) surfaces coated with plasma polymers as a first study to 
investigate anisotropic wetting behavior with picoliter droplets. 
They found significant differences in water contact angles when 
varying the contact angle from microliters to picoliters, and 
therefore highlighted the importance of showing drop size 
alongside contact angle results. 

According to the previous studies it has been demonstrated 
that droplet volume varying from microliter to picoliter scale has 
significant influence on wetting and drying behavior water droplet 
on non-porous substrates. Chemical and topographical 
heterogeneity highlights the importance of the droplet volume on 
the contact angle results. In this study pico- and microliter droplets 
contact angle values were compared on non-porous and porous 
substrates by using wide range of different surface tension liquids 
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to broaden the understanding of droplet volume’s effect on contact 
angle. 

Experimental 
Contact angles were measured by using Theta optical 

tensiometer (Attension, Biolin Scientific) equipped with high-
speed camera (420 fps/1550 fps), disposable tip pipette (volume 
200 µl) for microliter droplets and picoliter dispenser module with 
piezoelectric driver for picoliter droplets. The surface free energy 
of the inkjet paper (HP, Everyday photopaper, 170 g/m2) and low 
density polyethylene (LDPE) extrusion-coated paper was 
determined by contact angle measurement by using both microliter 
and picoliter sized droplets. Measurement liquids were water, 
diiodomethane (DIM) and ethyleneglycol (EG). The drop size was 
5 µl (2 µl for DIM) for microliter droplets and 200 pl for picoliter 
droplets. The Young-Laplace model was used for droplet profile 
fitting. In the case of picoliter droplets, the recording was started 
immediately after the drop was out to detect the adsorption of the 
liquids into solid surface. This was especially important with the 
porous inkjet paper, where the first contact angle value measured 
was used for surface free energy (SFE) calculation. In case of 
LDPE coated paper, the contact angle value at 2 s after liquid 
contact with the surface was used for SFE calculation. For picoliter 
sized droplets, the first frame was selected as a contact angle value 
with both LDPE and inkjet paper, due to fast evaporation of the 
droplet. The surface free energies were calculated by the 
OneAttension software using the extended Fowkes and the 
harmonic mean equation (Wu).  

To compare the effect of surface tension on contact angle 
measured with both micro and picoliter sized droplets, 
commercially available dyne test inks (Plasmatreat GmbH) were 
used as measuring liquids. Inks with surface tension values of 28 
mN/m, 38 mN/m and 48 mN/m as well as water (72 mN/m) were 
tested. The droplet size was 2 µl for microliter size and 200 pl for 
picoliter size droplets. The measurements were done with the same 
imaging parameters as for the surface free energy measurements. 

Results and Discussion 
Results showed that initial contact angles of picoliter droplets 

correlated well with contact angles of microliter droplet on 
smooth, non-porous polyethylene surface (Figure 1). The surface 
tension of the liquid had no significant influence on the 
correlation. The standard deviation of the measurements was 
between one and four degrees. 

 On porous and highly absorptive inkjet paper, droplet 
volume had a greater influence on contact angles, and picoliter 
droplets provided lower contact angles compared to microliter 
droplets as shown in Figure 1. For surface free energy results 
(Tables 1 and 2) defined from apparent contact angles, influence of 
droplet volume was less important. The surface free energy value 
for polyethylene was close to literature values. With inkjet paper 
the surface free energy was clearly higher compared to 
polyethylene. This was an expected result as the substrate surface 
energy should be higher than that of the ink to enhance wetting. 

These results accompanied with previous studies [3,4] 
indicate that picoliter droplets can routinely be used for contact 
angle measurements and surface free energy determination with 
smooth, homogeneous and non-porous polymer surfaces. As 
wetting hysteresis increases with non-ideal surfaces, the influence 

of droplet volume becomes more important. Surface roughness 
occurs in many different length scales, which all influence on 
wettability. The difference between the micro- and picoliter 
droplets may partly originate from the impact of different 
roughness scales on the contact angle: As base diameter of 
picoliter droplet is in microliter scale, macroroughness (0.1-1mm) 
has no or minor impact on the wetting of picoliter droplet. With 
porous substrates, also pores occur in different size scales causing 
the difference between micro- and picoliter droplet contact angles.  
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Figure 1. Contact angle of micro- and picoliter droplets as a function of liquid 
surface tension on non-porous and porous substrates. 

Table 1. Surface free energy of LDPE measured with micro- and 
picoliter droplets. 

  LDPE 
(micro droplet) 

LDPE 
(pico droplet)

Surface energy �tot 32,3 33,0
(Extended Fowkes) �d 32,3 32,8
 �p 0 0,2 
Surface energy �tot 33,8 35,4
(Wu) �d 33,5 34,4

�p 0,2 1,0
 

 

Table 2. Surface free energy of inkjet paper measured with 
micro- and picoliter droplets.  

  Inkjet paper 
(micro droplet) 

Inkjet paper 
(pico droplet)

Surface energy �tot 52,6 53,6
(Extended Fowkes) �d 38,5 36,5
 �p 14,1 17,1 
Surface energy �tot 57,0 57,2
(Wu) �d 37,7 33,8

�p 19,3 23,3  

 
Fast evaporation of the picoliter droplet caused differences in 

contact angle versus time curves. The results for polyethylene 
substrate (Figure 2) correlated well with the previous study by 
Taylor et al. [3]. The contact angle was stable as a function of time 
when measured with microliter droplets. With picoliter droplets, 
the decrease in contact angles occurred in two stages: In the first 
stage, the decrease in contact angles was faster until approximately 
one second, after which it continued slower. With inkjet paper, the 
contact angles decreased with time by using both micro- and 
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picoliter droplets. With picoliter droplets, the decrease was 
extremely fast and decrease occurred with one stage. It was also 
noted that with picoliter droplets the contact angle value stabilized 
immediately, whereas with microliter droplets the stabilization 
took more time (until ~0.1 s) and caused variation in contact angle 
results. This phenomenon was visible only by using high-speed 
camera (1550 fps).  
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Figure 2. Water contact angle with time (1550 fps) on polyethylene substrate 
by using micro- and picoliter droplets. The contact angle was stable with time 
when measured with microliter droplets, whereas with picoliter droplets the 
decrease in contact angles occurred in two stages.  
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Figure 3. Water contact angle with time (1550 fps) on inkjet paper by using 
micro- and picoliter droplets. Contact angles decreased with time by using 
both micro- and picoliter droplets.  

Conclusion 
As a conclusion, the results suggest that droplet volume, 

varying from microliter to picoliter volume, is a critical parameter 
influencing on contact angle also with porous substrates in 
addition to chemically or topographically heterogeneous 
substrates. When absorption and spreading behavior as a function 
of time is assessed, droplet volume should be considered also with 
smooth and homogeneous surfaces due to different evaporation 
behavior.   
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