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Abstract

Contact angle measurement is a common method to define
wettability and liquid-substrate interactions. Since inkjet printing
is based on ejection of separate ink droplets on substrate, contact
angle measurement is commonly utilized to characterize ink-
substrate interactions in inkjet printing. However, the droplet size
in contact angle measurements is typically in microliter scale,
whereas picoliter droplets are used in inkjet printing. In this work
an experimental comparison between micro- and picoliter droplets
to evaluate the influence of droplet volume on contact angle has
been made. Wide range of liquid surface tensions on porous inkjet
paper and non-porous polymer substrates were tested.

Introduction

Major advantage of inkjet technology is its versatility: almost
any kind of substrates can be used, such as porous, non-porous,
irregular and fragile substrates [1]. A sufficient ink-substrate
adhesion is crucial to ensure good print quality. Surface tension of
the ink and surface free energy of the substrate are in key roles to
ensure good adhesion. Both of these can be modified to promote
better adhesion, if it is not in sufficient level with preferred ink-
substrate combination.

The ink-substrate adhesion can be assessed with contact angle
measurements. Low contact angle shows good wettability and
indicates sufficient adhesion. Contact angle is also one of the most
sensitive of all surface analytical techniques since only the top
nanometer of the surface influence on the initial wetting behavior
[3]. As inkjet printing is based on separate ink droplets, contact
angle measurement represents well real life ink-substrate
wettability. However, typically microliter droplets are utilized in
the sessile drop method, whereas the picoliter droplets are used in
inkjet printing. In microliter scale it has been known already many
years that the effect of droplet size on contact angle depends on
substrate homogeneity [2]: The effect of droplet size becomes
more relevant when surface heterogeneity and roughness
increases, as it is well-known that contact angle value is depended
both on surface chemistry and roughness. It has been also showed
that an advancing contact angle is less depended on the droplet
size compared to a receding angle [2].

In recent years, the interest towards to the picoliter droplets
has increased due to emerging inkjet technology. Base diameter of
microliter droplets is typically larger than 1 mm, whereas with
picoliter droplets the base diameter is in micrometer scale. Thus,
small picoliter droplets enable also surface characterization of
novel micropatterned surfaces and single fibers. Therefore,
discussion about the effects of droplet size on contact angle has
broadened to compare microliter droplets to picoliter droplets.
Influence of gravity on the droplet and the rate of the drop size
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reduction due to evaporation are the two major differences
between pico- and microliter droplets [3]. When the droplet
volume increases, the larger the influence of gravity becomes.
Understanding the fast evaporation phenomena of picoliter
droplets is also important to be able to control the drying process
in inkjet printing applications. Berson et al. [4] showed that
contact angle value has significant effect on this evaporation
behavior of picoliter size water droplets. Droplet mass was shown
to decrease linearly when initial contact angle is small, whereas
decrease was not linear with larger contact angles. Some studies
have already showed comparison between pico- and microliter
droplets: Taylor et al. [3] demonstrated that picoliter volume water
droplets were comparable with those obtained from microliter
volume water droplets on a group of commonly used smooth
polymer surfaces. They studied the contact angle behavior as a
function of time using high-speed camera. With microliter droplets
the contact angles were stable with time, excluding the mobile
hydrogel polymer surface with which water chemically reacted.
With picoliter droplets contact angle decrease with time occurred
in two stages; fast evaporation and spreading during the first 0.5 s,
and then slower stage until it reached the receding value. Thus,
contact angle versus time curve indicates also hysteresis of the
substrate with picoliter droplets. The initial contact angle value of
picoliter droplets correlated well with the microliter droplet
contact angle values and was also close to literature value. Taylor
et al. [3] demonstrated also that with larger droplets and greater
influence of gravity, droplet profile fitting model needs to be
chosen with care. With picoliter droplets, both Young-Laplace and
circular fitting can be used as the free energy of the system at
equilibrium is minimized for a spherical shape [3]. With larger
droplets (>1ul) the circular fitting became inaccurate and Young-
Laplace model was shown to give constant value as a function of
droplet volume. Yang et al. [5] compared pico- and microliter
droplet water contact angles on grooved polymethyl methacrylate
(PMMA) surfaces coated with plasma polymers as a first study to
investigate anisotropic wetting behavior with picoliter droplets.
They found significant differences in water contact angles when
varying the contact angle from microliters to picoliters, and
therefore highlighted the importance of showing drop size
alongside contact angle results.

According to the previous studies it has been demonstrated
that droplet volume varying from microliter to picoliter scale has
significant influence on wetting and drying behavior water droplet
on non-porous substrates. Chemical and topographical
heterogeneity highlights the importance of the droplet volume on
the contact angle results. In this study pico- and microliter droplets
contact angle values were compared on non-porous and porous
substrates by using wide range of different surface tension liquids
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to broaden the understanding of droplet volume’s effect on contact
angle.

Experimental

Contact angles were measured by using Theta optical
tensiometer (Attension, Biolin Scientific) equipped with high-
speed camera (420 fps/1550 fps), disposable tip pipette (volume
200 pl) for microliter droplets and picoliter dispenser module with
piezoelectric driver for picoliter droplets. The surface free energy
of the inkjet paper (HP, Everyday photopaper, 170 g/m?) and low
density polyethylene (LDPE) extrusion-coated paper was
determined by contact angle measurement by using both microliter
and picoliter sized droplets. Measurement liquids were water,
diiodomethane (DIM) and ethyleneglycol (EG). The drop size was
5 ul (2 pl for DIM) for microliter droplets and 200 pl for picoliter
droplets. The Young-Laplace model was used for droplet profile
fitting. In the case of picoliter droplets, the recording was started
immediately after the drop was out to detect the adsorption of the
liquids into solid surface. This was especially important with the
porous inkjet paper, where the first contact angle value measured
was used for surface free energy (SFE) calculation. In case of
LDPE coated paper, the contact angle value at 2 s after liquid
contact with the surface was used for SFE calculation. For picoliter
sized droplets, the first frame was selected as a contact angle value
with both LDPE and inkjet paper, due to fast evaporation of the
droplet. The surface free energies were calculated by the
OneAttension software using the extended Fowkes and the
harmonic mean equation (Wu).

To compare the effect of surface tension on contact angle
measured with both micro and picoliter sized droplets,
commercially available dyne test inks (Plasmatreat GmbH) were
used as measuring liquids. Inks with surface tension values of 28
mN/m, 38 mN/m and 48 mN/m as well as water (72 mN/m) were
tested. The droplet size was 2 pl for microliter size and 200 pl for
picoliter size droplets. The measurements were done with the same
imaging parameters as for the surface free energy measurements.

Results and Discussion

Results showed that initial contact angles of picoliter droplets
correlated well with contact angles of microliter droplet on
smooth, non-porous polyethylene surface (Figure 1). The surface
tension of the liquid had no significant influence on the
correlation. The standard deviation of the measurements was
between one and four degrees.

On porous and highly absorptive inkjet paper, droplet
volume had a greater influence on contact angles, and picoliter
droplets provided lower contact angles compared to microliter
droplets as shown in Figure 1. For surface free energy results
(Tables 1 and 2) defined from apparent contact angles, influence of
droplet volume was less important. The surface free energy value
for polyethylene was close to literature values. With inkjet paper
the surface free energy was clearly higher compared to
polyethylene. This was an expected result as the substrate surface
energy should be higher than that of the ink to enhance wetting.

These results accompanied with previous studies [3,4]
indicate that picoliter droplets can routinely be used for contact
angle measurements and surface free energy determination with
smooth, homogeneous and non-porous polymer surfaces. As
wetting hysteresis increases with non-ideal surfaces, the influence
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of droplet volume becomes more important. Surface roughness
occurs in many different length scales, which all influence on
wettability. The difference between the micro- and picoliter
droplets may partly originate from the impact of different
roughness scales on the contact angle: As base diameter of
picoliter droplet is in microliter scale, macroroughness (0.1-1mm)
has no or minor impact on the wetting of picoliter droplet. With
porous substrates, also pores occur in different size scales causing
the difference between micro- and picoliter droplet contact angles.
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Figure 1. Contact angle of micro- and picoliter droplets as a function of liquid
surface tension on non-porous and porous substrates.

Table 1. Surface free energy of LDPE measured with micro- and
picoliter droplets.

LDPE LDPE
. (micro droplet) (pico droplet)

Surface energy O 32,3 33,0
(Extended Fowkes) of 32,3 32,8
P 0 0,2

Surface energy ot 33,8 35,4
(Wu) od 33,5 34,4
oP 0,2 1,0

Table 2. Surface free energy of inkjet paper measured with
micro- and picoliter droplets.

Inkjet paper Inkjet paper
- o (micrgzdgoplet) (picosgrgplet)
urface energy a© d ,

(Extended Fowkes) o! 38,5 36,5
oP 14,1 17,1
Surface energy o™ 57,0 57,2
(Wu) 0 37,7 33,8
oP 19,3 23,3

Fast evaporation of the picoliter droplet caused differences in
contact angle versus time curves. The results for polyethylene
substrate (Figure 2) correlated well with the previous study by
Taylor et al. [3]. The contact angle was stable as a function of time
when measured with microliter droplets. With picoliter droplets,
the decrease in contact angles occurred in two stages: In the first
stage, the decrease in contact angles was faster until approximately
one second, after which it continued slower. With inkjet paper, the
contact angles decreased with time by using both micro- and
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picoliter droplets. With picoliter droplets, the decrease was
extremely fast and decrease occurred with one stage. It was also
noted that with picoliter droplets the contact angle value stabilized
immediately, whereas with microliter droplets the stabilization
took more time (until ~0.1 s) and caused variation in contact angle
results. This phenomenon was visible only by using high-speed
camera (1550 fps).
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Figure 2. Water contact angle with time (1550 fps) on polyethylene substrate
by using micro- and picoliter droplets. The contact angle was stable with time
when measured with microliter droplets, whereas with picoliter droplets the
decrease in contact angles occurred in two stages.
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Figure 3. Water contact angle with time (1550 fps) on inkjet paper by using
micro- and picoliter droplets. Contact angles decreased with time by using
both micro- and picoliter droplets.
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Conclusion

As a conclusion, the results suggest that droplet volume,
varying from microliter to picoliter volume, is a critical parameter
influencing on contact angle also with porous substrates in
addition to chemically or topographically heterogeneous
substrates. When absorption and spreading behavior as a function
of time is assessed, droplet volume should be considered also with
smooth and homogeneous surfaces due to different evaporation
behavior.
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