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Abstract 

Manufacturers today must design products to meet global 
sustainability requirements that include human healthy and indoor 
air quality standards. Acceptable indoor environmental quality is a 
necessary requirement for today’s office buildings, schools, public 
facilities, and personal residences.  On a global basis, indoor air 
quality is one of the top three environmental issues facing all 
countries and all people.  Toxic chemicals, inorganic gases, and 
particles that are released by products into the indoor environment 
can contribute to human irritation, discomfort, and long term 
health consequences to those exposed.  These human effects can 
lead to excessive medical costs, loss of productivity, and 
undesirable litigation.  Imaging devices are known contributors of 
certain indoor contaminants such as respirable particles, volatile 
organic compounds (VOCs) including styrene and formaldehyde, 
and ozone.  Sources of these include electronic and heating 
processes, inks and toners, papers and transparencies, plastics, 
and cleaning solvents.  Manufacturers are proactively designing 
for the environment, including indoor air quality as an important 
part of their product stewardship, and eco-criteria are available 
for acceptable levels of airborne contaminants released by 
operating equipment.  This paper will review current international 
programs addressing allowable emissions from imaging devices 
(including Blue Angel, Greenguard, and the State of California), 
test procedures, and representative emissions data from print 
devices. 

Eco-criteria are based on the performance of operating office 
equipment and acceptable contributions of certain contaminants.  
Acceptable emission levels of reparable particles, formaldehyde, 
styrene, benzene, and other VOCs are based on existing health and 
safety data with some consideration for protecting sensitive people 
from irritants and odorants.  The primary measurement technique, 
environmental chamber technology, has been validated to test 
products under realistic use conditions and to determine emission 
rates of contaminant release.  These data can be used in building 
exposure models to predict and estimate potential human 
exposures, and to compare product data with prescribed eco-
criteria.  This measurement technology has been accepted on a 
global basis. 

Discussion 
Volatile organic compounds (VOCs), ozone, and particle 

emissions have been associated with operating equipment, such as 
computers, printers, and photocopiers [4,5].  Some studies have 
indicated that these emissions can result in headaches, mucous 
membrane irritation, and dryness of the throat, eyes, and nose [1, 2, 
and 3].  Limited guidance has been given on acceptable levels of 
ozone and other contaminants from office equipment, and 
regulations for permissible levels are not currently available. 
Outdoor air standards do exist in the United States for ozone and 

respirable particles, and these are frequently used as default 
standards for indoor air.  Germany’s Federal Environmental 
Agency has developed IAQ emissions criteria for ozone, styrene, 
benzene and particles for copiers and printers [4].  Certain other 
voluntary criteria programs have been developed in the Unites 
States including the GREENGUARD certification program, and 
the IEEE 1680 standard for imaging equipment [5, 6]. 

Comparisons of acceptable emissions criteria currently used 
by GREENGUARD and Blue Angel for monochrome print devices 
are shown in Table 1.  Blue Angel also has emissions criteria for 
color printing which includes 18 mg/hr TVOC, 1.8 mg/hr styrene 
and 3.0 mg/hr for ozone.  Acceptable benzene and dust levels are 
the same as for monochrome print devices. GREENGUARD also 
requires a complete listing of measured carcinogens and 
reproductive toxins and also requires that any pollutants meet any 
air concentrations covered by the United States National Ambient 
Air Quality Standard. Criteria for ultrafine particles are expected 
from Blue Angel in 2012.  

Table 1.  Acceptable Indoor Air Quality Criteria for Monochrome 
Imaging Devices 

GREENGUARD 
Certification 
Program 
 
(results in air 
concentration 
units) 

TVOC 0.40 mg/m3 
Benzene 0.002 mg/m3 
Styrene 0.04 mg/m3 
Formaldehyde 0.04 mg/m3 
Meets 1/10th TLV for emitting 
VOCs 
Ozone 0.06 mg/m3 
Particles 
(dust) 0.16 mg/m3 

Germany Federal 
Environmental 
Agency  
(Blue Angel) 
(results in emission 
units as emitted 
from printer) 

TVOC 10 mg/h 
Benzene ≤ 0.05 mg/h 
Styrene  1.0 mg/h 
Ozone 1.5 mg/h 

Particles 
(dust) 4.0 mg/h 

 
This paper presents emissions data obtained during the study 

of over 400 different imaging devices.  Studies were conducted in 
dynamic environmental chambers designed to simulate normal 
room conditions.  Temperature, relative humidity, and ventilation 
are controlled and the chamber is constructed and operated to 
allow measurement of low levels of contaminants, as found in 
indoor air. This data and the measurement technologies can be 
used by manufacturers to understand the IAQ impact of their 
products, benchmark their products, evaluate health hazards, and 
evaluate source reduction through supply chain management.  
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Methodology 

Environmental Chamber 
Equipment was tested in electropolished, stainless steel 

chambers, 6 m3 in volume.  Environmental chamber operation and 
control measures complied with ASTM D 6670 [7].  Supply air to 
the chamber was stripped of all measurable levels of 
formaldehyde, VOCs, particles, and ozone, so that contaminant 
backgrounds were < 2 µg/m3 TVOC, < 10 µg/m3 total particles, < 
2 µg/m3 formaldehyde, and < 0.01 ppm ozone.  Air supply to the 
chamber was maintained at a temperature of 23ºC  2ºC and relative 
humidity at 50% RH  5% RH, and the air exchange rate was 1.0 air 
change per hour (ACH).  A flow chart of the environmental 
chamber testing methodology is given in Figure 1.  Each printer or 
photocopier was continuously operated for a 20 minute period or 
until the paper supply was exhausted, whichever occurred first.   
Personal computers were powered during the entire test period.  
Emissions were continuously monitored for 4 hours following 
completion of the printing to ensure complete collection of all 
released contaminants.  For standard black printing, a 15 % page 
cover was used. 

 
Figure 1. A flow chart of the environmental chamber testing methodology 

Analytical Measurements 
For VOC analysis, an integrated chamber air sample was 

collected on Tenax® sorbent tubes following the guidelines of 
EPA Method IP-1B [8].  These tubes were subsequently analyzed 
by thermal desorption/gas chromatography/mass spectrometry 
(TD/GC/MS) with a mass selective detector.  The total VOC 
(TVOC) concentrations were determined along with identifiable 
specific VOCs.  This technique is generally applicable for 
compounds in the C

6
 - C

16
 hydrocarbon range and has a detection 

limit of 2 µg/m3 for TVOC and most individual VOCs at the 
sample collection volume used. 

Continuous particle monitoring was performed using an 
aerosol monitor.  This monitor uses a light scattering measurement 
technique to continuously determine airborne particle 
concentrations over time.  The analytical range of this instrument 
is 0.001 to 100 mg/m3, with the measurement of particles ranging 
from 0.1 to 10 µm in diameter.  The monitor is calibrated relative 
to a standard test aerosol (“Arizona road dust”) with fine particle 
sizes ranging from 0.1 - 15 µm; particle values measured in this 
study reflect instrument response to that material, with no attempt 
made to correct the data for the actual distribution of particles 
emitted by the test units.  Particle size determinations of the actual 
printer emissions were not determined. Gravimetric analysis of 
dust emitted during operation of the equipment was also performed 
using standard filter collection. Ultrafine particles were measured 
with a condensation particle counter and mobility particle sizer. 
Particle sizes from 7-300 nm were included. 

Ozone monitoring was conducted with continuous reading 
instrumentation.  This analyzer operates based on the strong UV 
absorbance of ozone at 254 nm.  A ratio of the sample absorbance 
to that of air with ozone catalytically removed is used to determine 
the concentration in the sample.  The instrument is pre-calibrated 
prior to use, and satisfies requirements for EPA ambient ozone 
monitoring, including an analytical range of 0.002 to 1.000 ppm. 
Total dust was also measured gravimetrically according to Blue 
Angel requirements. 

A constant source model was used to analyze the contaminant 
data.  The determination of the emission rate for a constant source 
in a well-mixed environmental chamber begins with a mass 
balance on the chamber with the following assumptions:  the unit 
emits at a constant rate over a defined period of time; the supply 
air to the chamber contains no measurable contaminants; and the 
chamber air is well-mixed and is representative of the 
homogeneous concentration. 

Results 
Emissions data obtained for VOCs, particles, and ozone as 

determined from various print devices are presented in Table 2.   
Emission rates are expressed as milligram (mg) of contaminant 
emitted per hour of equipment operation. Background total VOC 
(TVOC) emissions were measured from imaging devices while 
energized (but not actively printing).  This TVOC background 
averaged 1.4 mg/hr but there were no measurable background 
levels of ozone or particles.  TVOC, ozone, and particle emission 
rates showed a wide range of emissions among the available 
equipment, as listed in Table 2.   
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Table 2.  Summary of Emission Rate (ER) Data for Imaging 
Devices  

Average Contaminant ER,  mg/hr  
(Range of Values) 

TVOC Total 
Particles Ozone Ultrafine particles 

26.4 
(1.2-130) 

0.9 
(<0.02-5.5) 

0.8 
(<0.02-6.5) 

3.1x1011(±1 hr) 
(0.6x109-4.3x1013) 

 
 Over 700 different VOCs have been detected and 
measured. Those VOCs that were found in 50% of the print device 
studies are listed in Table 3. The top 20 most frequently measured 
VOCs along with their potential health hazard characteristics are 
listed in Table 4. 

Table 3.  Primary VOC Emissions from Office Equipment. 
Nonyl aldehyde 
(Nonanal) 

Ethanol, 2-(2-
butoxyethoxy) 

Formamide, 
N,N-dimethyl 

Decanal Hexanoic acid, 2-
ethyl 

Phthalic 
anhydride (1,3-
Isobenzofuran
dione) 

Cyclotrisiloxane, 
hexamethyl 

Acetic acid, 2-
ethylhexyl ester 

Benzene, 1,4-
dichloro 

Benzaldehyde Ethanol, 2-butoxy Phenol, 3-
methyl 

Cyclohexasiloxane, 
dodecamethyl 

2-Propenoic acid, 
2-ethylhexyl ester 
(Octyl acrylate) 

1,2-Ethanediol 
(Ethylene 
glycol) 

Benzothiazole Longifolene Benzene 
Pentadecane Styrene Hexane 
Cyclotetrasiloxane, 
octamethyl 

Benzene, 1-
methylethyl 
(Cumene) 

Acetate, vinyl 
(Acetic acid 
ethenyl ester) 

Hexanal 1,2-Propanediol  
(Propylene 
glycol) 

1,4-Dioxane 

3-Isopropoxy-
1,1,1,7,7,7-
hexamethyl-3,5,5-
tris(trimethylsiloxy)tetr
asiloxane 

Ethanol, 2-(2-
ethoxyethoxy) 
(Diethylene glycol 
monoethyl ether) 

Ethanol, 2-
ethoxy-, 
acetate (2-
Ethoxyethyl 
acetate) 

Octanal Hexadecane  
(Cetane) 

Ethene, 1,1,2-
trichloro 
(Trichloroethyl
ene) 

1-Butanol  (N-Butyl 
alcohol) 

Pentasiloxane, 
dodecamethyl 

Valproic Acid 

2,2,4-Trimethyl-1,3-
pentanediol 
monoisobutyrate 

Limonene 
(Dipentene; 1-
Methyl-4-(1-
methylethyl)cyclo
hexene) 

2-Hexanone 

Undecane Naphthalene Ethanol, 2-
ethoxy 

2-Pyrrolidinone, 1-
methyl 

Benzene, ethyl Phenol, 4-
methyl 

Cyclopentasiloxane, 
decamethyl 

Xylene (para 
and/or meta) 

Propane, 2-
ethoxy 

Toluene 
(Methylbenzene) 

2-Propanol 
(Isopropanol) 

1,3-
Benzenediami
ne, 4-methyl- 

Decane Xylene, ortho Benzenamine, 
2-methoxy- 

2-Propanol, 1-
methoxy- 

Phenol Ethene, 
1,1,2,2-
tetrachloro   
(Tetrachloroet
hylene) 

Benzenemethanol, 
à,à-dimethyl- 

2-Cyclohexen-1-
one, 3,5,5-
trimethyl- 

Oxirane, ethyl 

Tetradecane Benzene, chloro  
Dodecane Triethylamine 

(N,N-
Diethylethanamin
e) 

 

 
Emission rate data may be used to predict indoor 

concentration levels of specific contaminants, given the room 
characteristics.  These concentrations may, in turn, be used to 
evaluate potential health hazards from exposure.  For example, in a 
room with a volume of V (m3) and an air exchange rate of N (hr-1), 
the steady state concentration C

SS
 (µg/m3) of a contaminant being 

emitted at a rate E
U
 (µg/hr) by a continuously operating unit can be 

determined (based on mass conservation principles) from the 
equation: 
 
 

C
SS

 = E
U
/(N*V)      (1) 

 
This equation allows estimation of an approximate air 

exposure concentration at any time under other conditions of 
equipment operation, although the assumption must be made that 
the equipment emissions are relatively constant for each processed 
page.  At any time t (hr), the concentration C(t) (µg/m3) of a 
contaminant being emitted at a constant rate E

U
 (µg/hr) into a room 

of volume V (m3) and air exchange rate N (hr-1) can be determined 
from: 
 
 E

U
        

C(t) = ------------  *(1 - e-NT)    (2) 
   N*V       
 

Finally, an estimate of a concentration under static conditions 
(assuming no airflow in the space, but the space is completely 
mixed) may also be made for a given E

U
, time of operation, and 

room volume.  If a unit with an emission rate of E
U
 (µg/hr) is 

operating for time t (hr) in a room of volume V (m3), assuming 
there is no air exchange in the room (worst case), the concentration 
C (µg/m3) in the room at the end of operation is determined from: 
 

C = E
U
 * t/V.       (3) 
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Average exposure concentrations were determined based on 
two hours of equipment operation over an 8 hour day within a 
typical office space.  Exposures were determined for a room 
occupant assumed to be in the perimeter area of a room, 32 m3 in 
volume with an air exchange rate of 0.8. Calculated exposure 
concentrations are given in Table 5.  Certain, individual VOCs, 
regardless of TVOC levels, should be monitored an evaluated for 
potential odor or toxicity concerns.  For example, styrene, which 
has been found as a primary emitter from printers and 
photocopiers, has a low odor threshold (70 µg/m3) and may be 
found objectionable by some people. Other VOCs fall on potential 
hazard lists as indicated in Table 4 and should be assessed for their 
health impact based on expected human dose. 

Table 4. Frequently Found VOCs from Imaging Devices 
Compound Odorant Potential 

Carcinogen9 
Re-

productive9 
Long-
term 

Health 
Impact10 

Nonyl aldehyde 
(Nonanal) 

x    

Decanal x    
Cyclotrisiloxane, 
hexamethyl 

    

Benzaldehyde x    
Cyclohexasiloxan
e, dodecamethyl 

    

Cyclotetrasiloxan
e, octamethyl 

    

2-Pyrrolidinone,  
1-methyl 

 x   

Toluene(Methylbe
nzene) 

x  x x 

2-Propanol,            
1-methoxy 

x   x 

Ethanol,                
2-(2-
butoxyethoxy) 

x   x 

Hexanoic acid, 2-
ethyl 

 x   

Sytrene x   x 
Pentasiloxane, 
dodecamethyl 

    

Naphthalene x x  x 

Benzene, ethyl x x  x 
Xylene (para 
and/or meta) 

x   x 

2-Pyrrolidinone     
Acetophenone 
(Ethanone,            
1-phenyl) 

x    

Xylene, ortho x   x 
2-propanol, 1-(2 
methoxypropoxy) 

    

Table 5.  Typical Contaminant Exposure Concentrations from 
Imaging Equipment for Room Occupant, mg/m3 
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