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Abstract 

As “going green” becomes the expectation rather than the 
exception, models for proving the environmental compatibility of 
the entire ecosystem—rather than point devices—will be 
necessary. In this paper, we explore the ecosystem advantages of 
variable data printing for sustainability. Sustainability, like 
security, is more effective when built in from the ground up. 
Variable data printing (VDP), pre-adapted for use in security 
printing, is likewise preadapted for utility in sustainable printing. 
In this paper, we show the preadaptation of VDP toward 
sustainability, and explore the factors involved in determining the 
Environmental Return on Investment (E-ROI) of printing. 

Introduction 
A well-supported model for sustainability is needed for the 

printing business so that consumers of digital media are guided to 
the best solutions across the gamut of electronic publishing, 
graphic displays and printed material. Previous models have 
focused on point comparisons—for example, how many pages 
must be read on an electronic book reader for it to be as 
environmentally sustainable as paper? These models generally 
suffer from the lack of good data on the entire ecosystem aspects 
of the sustainability. For example, in the paper industry, the 
relative impact of recycling compared to dedicated forestry is not 
fully understood. In the electronic book industry, the future costs 
of recycling—including new levels and types of toxicity—are 
generally not part of current models. 

In this paper, we focus on aspects of the overall ecosystem in 
which printing or its equivalent (displays and electronic books) 
occur that can be differentially modeled. This is addressed using a 
form of sensitivity analysis in which a single, logical component 
of the ecosystem is removed in order to see which approach—
printing, manufacturing, display, electronic book, etc.—provides 
the best sustainability. 

Variable Data Printing (VDP) 
Variable data printing, or VDP, is the use of digital and on-

demand technologies to provide customized, individualized and/or 
otherwise unique print rasters for each item in a series. In one of 
the simplest forms, VDP is used for mass serialization of for 
example barcodes, with each barcode having its own unique 
sequence of characters. 

VDP underpins the mass customization of printed materials 
using digital technologies, as opposed to the analog technologies 
underpinning offset, gravure, flexo and other traditional printing 
technologies. With VDP, a run of 2,000 labels, for example, can 
produce 2,000 unique labels. Offset printing, however, results in 
2,000 identical labels. 

With VDP, each instance of a package, label, ticket, or other 
document can contain its own unique identifier. This allows the 
direct connection of the printed material with on-line content, 
whether through overt marks such as barcodes [1][2] or covert 
marks such as digital watermarks [3]. 

Preadaptation 
Preadaptation is a term from evolutionary biology in which a 

characteristic, or trait, of a species, is originally selected by the 
environment because of the survival advantage it provides through 
one function, but then is later selected for because of the advantage 
it provides in a distinct function. One obvious preadaptation is 
feathers, which were originally selected for based on their thermal 
regulatory properties. This selection, however, led to an 
unanticipated second functionality in aiding flight. 

VDP and Security Printing 
VDP is preadapted to utility in security printing, because 

security printing also benefits from the attributes of customization, 
serialization and digital printing. Barcodes used for track and trace 
benefit from unique serialization, as do other security features such 
as microtext, graphical alphanumerics, void pantographs and 
digital watermarks. VDP enables security printing with only a 
modest (software/graphical artist) increase in cost and effort. 

VDP and Sustainability 
VDP is also preadapted to sustainability, inasmuch as the 

variability offered by different substrates, inks, and printing 
designs allows printing to be used as a means to change the 
behavior of sensing, electrical circuits, and other active printing 
behavior. 

How does VDP help sustainability? As with any meaningful 
topic, there are several ways to cut through the data. One 
meaningful way is to recognize that there are two broad classes of 
sustainability: 

 
(1) Sustainability through Functional Replacement 
(2) Sustainability through Targeting 
 
Sustainability through functional replacement focuses on the 

ability of VDP to provide the functionality of what are 
traditionally non-printing capabilities. This includes electric 
power, through replacement of traditional battery capability [4] or 
energy scavenging [5][6]; security inks [7]; magnetic inks for 
MICR reading [8]; and conductive inks to support near field and 
RFID applications [9][10]. 
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Figure 1. Sustainability through Functional Replacement. At the left are 
printed RFID antennae and the RFID element within. In the center is an RFID 
sensor surrounded by its printed antenna. The rightmost image is the RFID 
reader. 

Sustainability through Targeting is the environmental value of 
VDP when it creates a more efficient means of achieving a goal. 
For example, if targeted advertizing obtained through individually 
customized magazines results in one sale per 400 customers, while 
non-customized magazine advertisements results in one sale per 
2000 customers, then there is an 80% improvement in targeting 
these magazines, meaning among other factors a reduction in the 
amount of materials needed to print the magazine – since on 
average only 20% as much advertizing will perform the same 
function as before. Thus, a 100-page magazine with 50 pages of 
advertisements becomes a 60-page magazine with 10 pages of 
advertisements, with a 40% reduction in environmental costs. 

The E-ROI Model: Overview 
The Environmental Return-On-Investment (E-ROI) model 

which we introduce is based on the relative cost to the 
environment of the non-VDP functionality or non-VDP targeting. 
The example in the previous section shows a 40% increase in total 
return on investment for printing due to targeted advertizing. A 
VDP battery that prints for 5% of the cost of a manufactured 
battery and last 1/10th as long would appear to be a 50% 
improvement on E-ROI. However, other factors (such as the fact, 
for example, that the batteries it replaces are used, on average, for 
only 40% of their lifecycle), may improve the overall E-ROI. 

Our E-ROI model, therefore, will include, among other 
factors, the following: 

 
(1) Environmental cost of materials (Sustainability Cost) 
(2) Relative lifetime 
(3) Effectiveness of replacement 
(4) Recyclability 
(5) Toxicity and future costs of toxicity 
(6) Flow through of value 
 
The last, flow through of value, is particularly important. 

Technologies which enable later research that may lead to further 
improvements on E-ROI can be discounted by the future value of 
the investment, just as technologies that increase future cost to the 
environment – through toxicity, mutagenicity, etc. – must be 
penalized accordingly. 

The E-ROI Model 
The E-ROI model components are elaborated further here, 

and then applied to both paper-based and electronic reading. The 
first component in the E-ROI model, environmental cost of 
materials, is designated Sustainability Cost (SC), and comprises at 
minimum the following: 

 
(1) Cost of sourcing the materials. For paper this means the 

cost of accessing the forest, cutting down and stripping the trees, 
etc. For electronic devices such as e-readers this includes the cost 
of mining, sourcing and manufacturing plastics, etc. In either case, 
recycling will greatly reduce this cost, but that is a separate factor 
in the overall model. 

(2) Cost of undoing the deleterious effects of sourcing. For 
paper, this means replanting and perhaps re-introduction of species 
at risk, etc. For electronics manufacturing, this may include the 
cost of undoing land damage – along with the occasional 
superfund cleanup – in addition to the replanting. 

(3) Cost of land productivity loss. This means the maximum 
value of the land used for sourcing the materials – in terms of real 
estate, alternate crops, carbon sinking, etc. 

(4) Other greenhouse gas/carbon costs. This includes 
transportation, re-location of employees, incremental costs of 
housing, development, etc. 

 
This, SC, is the first factor in the E-ROI. The second factor is 

relative lifetime. Since the cost is inversely proportional to 
lifetime, then the relative lifetime coefficient, kRL, is combined 
with SC as follows: 

 
E-ROI = SC / kRL 

 
The effectiveness of replacement is a direct multiplier, whose 

value is generally ≤ 1.0. This lowers the relative cost predicted by 
the model since if the replacement’s value is less than the current 
solution, the current solution’s ROI for value add is higher. The 
coefficient for replacement effectiveness is kE, and so this creates 
the overall model: 

 
E-ROI = kE SC / kRL 

 
Next, recyclability is considered. Recyclability is at least as 

complex as the percent of the material that can be recycled 
multiplied by the relative effectiveness of the recycled material in 
substitution for the original material. The latter is lower for paper 
than for metal, as discussed below. However, it is certainly higher 
for paper than it is for printed circuit boards (PCBs) and many 
other materials and components in e-readers. The higher the 
recyclability, the lower the sustainability cost of the product. Thus, 
the E-ROI model is updated to include the recyclability 
coefficient, kR, as follows: 

 
E-ROI = kE (1- kR) SC / kRL 

 
Next, the effects of present and future toxicity of the product 

are considered in the toxicity factor, given by the coefficient kT. 
Since higher toxicity increases the relative cost of a product from a 
sustainability perspective, it updates E-ROI as: 

 
E-ROI = kT kE (1- kR) SC / kRL 

 
The flow through of value is represented by the coefficient 

kFT. Since the overall cost is improved by a larger kFT, this 
completes the model as: 
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E-ROI = kT kE (1- kR) SC / kFT kRL 
 
In order to input values into the final E-ROI model, we 

consider information provided in references [11]-[13]. In reference 
[11], it is noted that the recycling of “scrap metal reduces 
greenhouse gas emissions and uses less energy than making metal 
from virgin ore. The amount of energy saved using various 
recycled metals compared to virgin ore is up to: 92 percent for 
aluminum, 90 percent for copper, and 56 percent for steel.” The 
reference also notes that metal recycling results in significant 
impacts on environmental cost of materials, which in our model 
directly affects kR. For example, recycling “one ton of steel 
conserves 2,500 pounds of iron ore, 1,400 pounds of coal and 120 
pounds of limestone. Recycling a ton of aluminum conserves up to 
8 tons of bauxite ore and 14 megawatt hours of electricity.” As 
noted above, basing e-reader recyclability on the scrap metal 
ignores the lower relative recyclability of most, if not all, other 
materials and components in the e-readers. However, it will be 
used herein in order to demonstrate that even under these favorable 
conditions, the relative sustainability of e-readers is suspect. 

In reference [12], it is noted that “The pulp and paper industry 
is very energy intensive, requires extremely large amounts of 
water, and often entails the use of toxic chemicals, of which the 
most problematic are the chlorine compounds used in bleaching 
pulp to make bright white paper.” Again, maximizing recycling is 
given as the best path forward. However, for higher grade paper, 
comprising 27% of the paper manufactured in the US, only 6% of 
the fiber in the paper is recycled. Recycling reduces energy use by 
44%, greenhouse gas production by 37% , waste water by 46%, 
and solid waste by 49%. In [12], it is also noted that “The number 
of times paper can be recycled depends upon the quality of the 
fiber. Poorer quality paper like newsprint has shorter fibers that 
will break down after 3 or 4 cycles of repulping whereas high-
quality printing and writing paper may be able to be repulped up to 
about 10 times.” 

In reference [13], it is noted that 80 percent of U.S. paper 
mills (115 mills) rely on recycled paper (37% of their material). 
“Producing recycled paper takes 40% less energy than producing 
paper from virgin wood pulp. Using recycled scrap paper instead 
of virgin material saves 7,000 gallons of water per ton of paper 
produced. Recycled paper production creates 74 percent less air 
pollution and 35 percent less water pollution than virgin paper 
production.” 

For non-paper products, reference [13] notes: “In 2009, 3.4 
million tons of aluminum were generated in the U.S. and 0.69 
million tons were recovered. The U.S. recycling rate for aluminum 
beverage cans reached 58.1% in 2010 – a rate that is more than 
double that of any other beverage container. [Thus], aluminum 
cans have 68% recycled content. [Importantly,] 20 recycled cans 
can be made with the energy needed to produce one can using 
virgin ore. The pollutants created in producing one ton of 
aluminum include 3,290 pounds of red mud, 2,900 pounds of 
carbon dioxide (a greenhouse gas), 81 pounds of air pollutants and 
789 pounds of solid wastes.” 

Putting together this information, we can obtain absolute 
and/or relative values of the coefficients for both paper and 
electronics recycling. 

For the relative lifetime coefficient, kRL, it is not clear that 
paper is any more or less transitory than an e-reader. Paper can be 

preserved indefinitely. Electronic reading material, can be 
transferred from one device to another. But, e-readers, like laptops, 
pads and mobile phones, are replaced approximately every two 
years. A value of 1.0 is assigned to each column in Table 1. 

 
 

Coefficient Paper Electronics 
kE 1.0 1.0 
kFT 1.0 0.8 
kT 1.0 1.25 
kR 0.44 0.79 
kRL 1.0 1.0 
Table 1. Coefficient values for paper and electronics (e.g. e-reader) E-ROI 
models. See text for details. 

Next, effectively of replacement is considered. Since paper 
has benefits (no power requirements, no boot up time, effective 
searching) and electronic reading has benefits (faster search, 
transferability, re-purposability), each is assigned a 1.0 value here. 

Based on the recyclability discussion in references [11]-[13], 
the value kR is assigned a value of 0.44 for paper (the mean of 
46%, 44%, 37% and 46%) and a value of 0.79 for metal (the mean 
of 0.92, 0.90 and 0.56). 

Toxicity is a concern for both paper and electronics. 
However, the relative impact of electronics is almost certainly 
higher, since metals, plastics and toxic agents are involved. A 
conservative value of 1.0 for paper and 1.25 for electronic systems 
is given in Table 1. 

The last factor is the flow through coefficient, kFT. Toxicity is 
the best predictor for the future cost of a product, and so a value of 
1.0 for paper and 1/1.25 = 0.80 for electronics is given. This is a 
conservative estimate, since paper has been around for a long time 
and is less likely to have unanticipated future costs to society. 

Combined, these values result in the following estimates for 
E-ROI for paper and electronics: 

 
E-ROI (paper) = 1.0 * 1.0 * 0.56 * SC / 1.0 * 1.0 = 0.56 SC 

 
E-ROI (electronics) = 1.25 * 1.0 * 0.21 * SC / 0.8 * 1.0 = 0.33 SC 

 
From this, we can see that the model predicts a better E-ROI 

– that is, a lower total cost – for electronics compared to paper if: 
 
0.33 SC (electronics) < 0.56 SC (paper) 
 
Thus, the e-reader SC costs must be less than 169.7% of the 

SC costs for printing to provide better sustainability costs. Given 
the mining, PCB, and other component SC costs, however, it is not 
clear than e-readers do provide better sustainability. Regardless, 
this model provides a direct comparison on SC costs alone. 

Future Work and Afterword 
Clearly, the sample given above for the E-ROI model is 

oversimplified. It is intended to illustrate how the different factors 
in the E-ROI model impact the overall sustainability cost of a 
product. Future work will focus on providing more in-depth 
analysis of each of these factors. The present work does illustrate 
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that an overall environmental cost, based on many factors, can be 
estimated for variable data printed and electronically read 
materials. 

Interestingly, as this paper was being finalized for the 
conference, the first author received an email [14] addressing the 
“creation of a National No-Print Day (NNPD), to be held on 
October 23, 2012. This nationwide campaign has been designed to 
encourage, educate, and challenge individuals and companies to 
commit to one day of ‘no printing’ and to raise awareness of the 
impact printing has on our planet.” 

This email was very timely, and it underscored the need to 
consider in more depth each of the major factors outlined in the E-
ROI model described herein. The email included the following 
information: “Toshiba claims that our industry has failed ‘to make 
the link between printing waste and its negative impacts on our 
landfills, natural resources and the environment.’ … Our industry 
has long led the way in utilizing sustainable processes. The 
primary raw material for printing is paper, which comes from 
trees, which are a renewable resource—so renewable that today 
our country has 20 percent more trees than it did on the first Earth 
Day which was held more than 40 years ago. Printing is the only 
medium with a one-time carbon footprint—all other media require 
energy every time they are viewed.” The email also noted that 
“Electronic devices … require the mining and refining of dozens 
of minerals and metals, as well as the use of plastics, hydrocarbon 
solvents, and other non-renewable resources. Moreover 50–80 
percent of electronic waste collected for recycling is shipped 
overseas and is often unsafely dismantled.” 

To address some of the misconceptions involved in 
understanding the true E-ROI for printing, the Printing Industries 
of America have provided an informational website [15]. It is 
obvious from that website, and from the E-ROI model provided in 
this paper, that factors involved in determining SC are hugely 
important in estimating the true overall sustainability implications 
involved in any product. We expect this issue to become 
increasingly more important as mobile reading devices start to be 
“recycled” and replaced en masse. Almost certainly, a 20-month 
replacement lifetime for electronic reading devices is going to 
cause a reassessment of the “earth friendliness” of products which 
replace paper. Further reasons for concern regarding e-readers can 
be gleaned from reference [16], which describe the shockingly low 
recycling rates (≤ 25%) for electronic devices and their materials 
(metals, selenium, arsenic, plastics and epoxy resins). 

Regardless of the actual environmental costs of printing, it is 
clear that, as VDP is more ubiquitously adopted, less printing will 
be performed speculatively. Printing will be more targeted, and as 
more functionality is added to printing, VDP will be able to 

replace more custom manufacturing processes. This will reduce 
waste, with or without recycling. 
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