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Abstract 

Conversion of analog to digital technology is occurring at an 
ever increasing speed in the commercial printing industry. 
Digitally printed papers, as a consequence, are becoming a larger 
proportion of the incoming waste paper stream to the recycling 
industry. Deinking of digital prints involve deeper understanding 
of the ink and their interaction with various types of substrates. In 
this paper, a comparative study of alkaline deinking and neutral 
deinking of LEP prints with a variety of substrates is presented. 
The results show that the preferable neutral chemistry is always 
successful in deinking, while the alkaline chemistry appears to be 
more complicated.  

Introduction 
Liquid Electrophotography (LEP) is a form of digital printing 

technology that uses isoparaffinic oil based liquid toners and can 
produce high quality printed materials. With the continuing analog 
to digital transformation in printing, the amount of such digital 
prints entering the post-use recycling stream is also rising. Due to 
the nature of LEP prints’ film-forming characteristics on the 
surface of the paper substrate instead of being fused into the 
substrate, as in some other printing technologies, e.g. dry 
electrophotography (DEP), the deinking dynamics of such prints 
may necessitate a deeper understanding of the LEP printing 
process and deinking chemistries. Deinking of LEP digital prints 
has been described in recent publications [1, 2] using a near-
neutral chemistry (termed as HPES) and an alkaline chemistry 
(termed as HPMF). In the HPES, 0.6 wt% (relative to dry paper 
weight) nonionic surfactant polyoxyethylene (8) stearate 
(tradename MYRJ 45) is used during pulping and a small amount 
(no more than 0.1 wt%) anionic surfactant (e.g., SDS) is used 
during flotation. In alkaline chemistry HPMF, 0.8 wt% erucic acid, 
in addition to enough NaOH and 3 times Na2SiO3 to maintain a pH 
of 9.5 ± 0.5 after pulping, are added. Both of these methods 
represent two broad classes of chemistries used in the deinking 
industry. In particular, we have shown that both HPES and HPMF 
effectively remove the inks from LEP prints, as well as other 
digital and analog prints. Although HPES and HPMF chemistries 
were shown to work well, a comparison of their deinking 
performances is lacking. It is well known in the print industry that 
the substrates used in any particular   printing technology play a 
substantial effect on the adhesion of ink to the substrate and 
fundamental insight into LEP adhesion has been discussed in the 

literature [3]. It is therefore expected that printing substrates or 
media will have influential effect on deinkability of LEP prints.  

In this paper, we present a comparative study of HPES and 
HPMF deinking results of LEP print samples using a variety of 
coated and uncoated substrates commonly used in North America 
and Europe. Our results identify three most important factors 
affecting the deinkability of LEP prints.  

 
Figure 1: Schematic of Deinking Study. 

Laboratory Scale Deinking Process  
Figure 1 shows the key steps involved in the laboratory scale 

deinking study. Except for the chemistry, it is similar to the lab 
scale deinking evaluation (i.e. INDEGE Method 11p) as 
recommended by deinking signatory INGEDE. The chemicals and 
their entry points during the deinking process are shown as 
follows:  

HPES: At point “a” only polyoxyethylene (8) stearate is used. 
Two variations are tried: In the first variation non-ionic surfactant 
TX-100 is used at point “b”. In the second variation anionic 
surfactant sodium dodecyl sulfate (SDS) is used at point “b”. 

HPMF: At point “a”, NaOH, Na2SiO3 (pH 9 – 10 after 
pulping), H2O2 and Erucic acid are used. Three variations are 
tried: in the first variation no surfactant is used at point “b”. In the 
second variation non-ionic surfactant Triton X-100 (TX-100) is 
used at point “b”. In the third variation anionic surfactant sodium 
dodecyl sulfate (SDS) is used at point “b”. 

Results 
The results of deinking are summarized in Table 1. Ten 

papers were used in this study and their organic and inorganic 
constituents, analyzed by TGA in an air atmosphere, are also listed 
in Table 1.  

 The deinking performance is evaluated according to ERPC 
deinking scorecard. The ERPC deinking scorecard  
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Table 1: Summary of deinking results. In the first column, paper number, origin continent, coating characteristics (C or UC), organic 
content, CaCO3 and clay content (all three of the bulk paper) are listed. DP represents deinked pulps, A50 and A250 represent ink 
specks above 50 μm and 250 μm respectively. FY represents % flotation yield. If a paper meets the ERPC deinkability scorecard 
requirement then it is given a “P” and if it does not meet then an “F” (in the DP results) is awarded. 

 

 

 
 

stipulates a variety of criteria [4] for deinking evaluation. For LEP, 
the most important measures are A50 and A250. These are ink 
specks of equivalent diameter of 50 μm or above and 250 μm or 
above, respectively, left on the deinked pulp (DP) handsheets. 
These two parameters are represented in mm2/m2 and have a strict 
upper threshold of 2000 (A50) and 600 (A250) for passing. 

In addition to these two parameters, the ERPC deinking 
scorecard has requirements for brightness, ink elimination, color 
shade of DP and filtrate darkening. These parameters, although 
critical for inkjet prints, are not problem areas for LEP prints.  

In addition to A50 and A250 of DP handsheets, Table 1 
also shows the flotation yield (marked by FY in Table 1) in 
each of the cases.  
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Figure 2:Flotation Yield vs. Paper organic content. Paper organic content is 
measured by TGA in air atmosphere. The numbers inside the figure represent 
paper numbers. 
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With the ERPC deinking scorecard criteria, each of the 
deinking run is judged pass (P) or fail (F) and is also listed in Table 
1. It is seen that every paper can be deinked with both HPES and 
HPMF (one paper, namely #8 was seen as a difficult paper with 
even SDS). In most cases, a surfactant is needed at the flotation 
stage point b. Some papers, especially #1 and #3, can be deinked 
easily without any surfactant. 

An investigation of Table 1 shows that all of the papers 
investigated here are easily deinkable with the HPES chemistry 
and often with high flotation yield. In general, the alkaline 
chemistry’s success is much more complicated. 

Before further discussion of paper deinkability with different 
chemistries, a review of yield will be provided. Figure 2 shows 
flotation yield for two different chemistries and the ten papers 
studied in this paper. This is, indeed, a graphical representation of 
some of the data in table 1.  

It is seen from Figure 2 that the higher the organic content of 
the paper (the organic content of a paper is mostly cellulose), the 
higher the flotation yield. The uncoated papers (papers #2, #3, #8 
and #10) have higher organic content than coated papers and 
consequently have higher flotation yields.  Of course, flotation 
yield involves many complicated phenomena, e.g. fiber entrapment 
and filler attachment to inks and some results seen in Table 1 and 
in Figure 2 cannot be easily understood or explained. 

Paper #8 does not have the smallest organic content, but has 
lower yield than paper #5. Also, alkaline and neutral chemistry 
yields are comparable but no specific trend in their yield 
differences can be concluded. 

Returning to the results shown in Table 1, three NA papers 
and only one EU papers were seen to be deinkable without any 
surfactant during flotation. For some papers, for example paper #2 
(a NA uncoated paper), the generation and availability of foam was 
seen as very limited. The foam bubbles were seen to agglomerate 
and burst easily. It is possible that certain chemicals added during 
paper manufacturing were acting as a “defoamer” during flotation. 
For this paper #2, addition of a small amount of ubiquitous liquid 
nonionic surfactant TritonX-100 (polyoxyethylene octyl phenyl 
ether) can successfully complete the deinking. The addition of TX-
100 during flotation helped in many cases, but not all. In almost all 
of the cases, where TX-100 was not effective, addition of a small 
amount of anionic surfactant SDS (sodium dodecyl sulfate) was 
effective. Interaction of TX-100 and SDS with cellulose has been 
discussed by Paria et. al [5]. For paper #8 it is found that even 
addition of 0.1 wt% SDS is not enough to deink LEP prints on this 
paper. 

A closer investigation of the detached ink specks during 
alkaline deinking unravels few of the mysteries. Figure 3 shows 
one ink speck of paper #1 and one ink speck of paper #8. The 
differences seen in the optical micrographs in this figure are 
striking. Paper #1 ink particles are generally clean and only contain 
thin and small amount of material (generally white in color) most 
possibly fragments of paper coating. 

 

 

 
Figure 3: Ink specs seen in HPMF deinking; paper #1 is shown in the top two 
optical micrographs and paper #8 is shown in bottom two optical micrographs. 

Paper #8, on the other hand, contains lot of thick (also white) 
material.  It is, of course, not clear what these white materials are. 
To identify these materials more definitively, FTIR of ink specks 
were done on a ThermoNicolet spectrometer. Comparison of ink 
specks obtained from paper #1 and paper #8 are shown in figure 4. 
In this figure, FTIR spectra of precipitated calcium carbonate 
(PCC, Albagloss S from Specialty Minerals Company), kaolin clay 
(Kaofine 90 from Thiele Kaolin Company) and a thick layer of ink 
from an LEP print are also shown (this ink specimen was specially 
printed on an LEP press and did not come into contact with any of 
deinking chemicals). The FTIR spectrum of a typical ink speck 
from paper #1 and a comparison with the three reference FTIR 
spectra of Figure 4 shows that this ink contains mainly the original 
LEP ink and clay (and also a very small amount PCC). A typical 
ink speck from paper #8 HPMF chemistry undeinked pulp, on the 
other hand, contains large amount of PCC covering the underlying 
ink.  

PCC, when attached with ink specks, not only changes their 
buoyancy but also lowers their hydrophobicity. As a result, these 
more hydrophilic ink specks are not easily removed in flotation 
removal. J. Penfold and coworkers have investigated surfactant 
adsorption on hydrophilic silicon surfaces [6] and have observed 
that anionic surfactant like SDS do not adsorb on hydrophilic 
surfaces and a nonionic surfactant (Penfold et. al. reported using 
hexaethylene monododecyl ether) is needed for adsorption of SDS. 
It is thus no surprise that our HPES chemistry works for all papers, 
as it should be pointed out that a nonionic surfactant 
(polyoxyethylene (8) stearate) and SDS are both present in this 
chemistry. 
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Figure 4: FTIR measurement of ink specks from paper #1 and paper #8 are 
shown. FTIR of PCC, clay and LEP ink are also shown. 

To investigate whether our HPES success and the data 
presented by Penfold et. al. [6] has a similar origin, a surfactant 
combination of polyoxyethylene (8) stearate and SDS with 
different molar ratios was tried on paper #8. Figure 5 shows the 
result of deinking of paper #8 using HPMF chemistry and addition 
of a blend of MYRJ45 and SDS during flotation. For all the 
experiments done using this blend, the total surfactant addition 
during flotation was set at 0.1 wt% to be consistent with all other 
deinking shown in table 1. 

Even though paper #8 is the most difficult paper to deink with 
the alkaline chemistry, a blend of nonionic and anionic surfactant 
may be more efficient in removing the ink specks. The ink specks 
were seen to be “severely” contaminated with paper filler material 
and the nonionic and anionic surfactant blend binds better with the 
charged ink contaminants. With this limited investigation, it was 
found that 50%:50% ratio of the two surfactants worked most 
efficiently. This result is in disagreement with the speculation of 
Penfold et. al that the chemical ratio should correspond to the 
molar weight ratio of the two surfactants. 
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Figure 5: A blend of nonionic surfactant (MYRJ 45) and anionic surfactant 
(SDS) is added during flotation. The chemistry of pulping was HPMF. Total 
weight of surfactant was kept at 0.1 wt%. This at the point where SDS wt% is 
0, MYRJ 45 wt% is 0.1. 

 

Discussion 
Based on this work, it was found that three factors are most 

important for deinking of LEP prints. In the order of importance 
they are: (i) Availability of foam during flotation. This can be 
affected by the presence of defoaming agent used during paper 
manufacturing, which could quench the foam formation. This is 
detrimental for flotation deinking, especially in the case of LEP 
prints. A layer of foam has to be present at the top of the flotation 
cell to entrap the ink. In such papers there is no alternative to 
adding extra surfactant during flotation. Only paper #1, paper #3, 
paper #4 and paper #10 were found to have good foam. (ii) 
Cleanliness of detached ink particles. It was found that sometimes 
paper coating layers do not bind strongly with the base layer of the 
paper. During pulping the ink layer and coating material (also with 
underlying fiber) detach together. In such cases, the ink particles 
become somewhat hydrophilic to be carried away by the foam. 
Surfactants or surfactant blends that can adsorb more efficiently 
with such ink particles become important. (iii) The size of ink 
specks is the third factor. If the ink specks, somehow, can be 
broken into small pieces, the deinking will be easier. Ink specks in 
uncoated paper samples are, generally, smaller and as a result 
deinking of uncoated papers are also easier. HPES chemistry, also, 
is more efficient in breaking down LEP inks into smaller particles, 
and in part, contributes to its superiority. In some cases, some extra 
shear-producing steps, such as kneading or disperging can also 
break up the ink particles. This will improve LEP deinkabilty even 
more. 
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