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Abstract 
In electrophotography, color reproduction is susceptible to 

variations in operating conditions. Calibrations are performed to 
ensure consistent tone reproduction. The timing of calibration 
directly impacts color consistency. Calibration consumes time and 
toner. Frequent calibration is not desirable. It is important to 
determine appropriate calibration timing to maintain acceptable 
color consistency while minimizing consumable usage and print 
job interruption. This paper proposes an adaptive approach that 
uses a decision tree (DT) to determine calibration timing. In the 
approach, experiments are designed to collect tone measurements 
under various operating conditions. Decision trees are developed 
with these measurements using machine learning algorithms. The 
resulting DTs can be used to predict tone deviations and determine 
appropriate calibration action based on changes in operating 
conditions. Experimental results demonstrate that the proposed 
approach can reduce the overall calibration frequency by 30.9% 
while maintaining desired tone consistency. 

Introduction 
For electrophotography (EP), color reproduction quality is 

known to be affected by changes in operating conditions, such as 
temperature, humidity, OPC drum age, usage, and throughputs.  
Calibrations are performed to maintain tone consistency under 
changing operating conditions [1-5].  During a calibration, a 
number of color patches are printed on either transfer belts or 
output media and measured by on-board sensors.  Based on these 
measurements, calibration algorithms generate appropriate 
adjustments to EP process parameters, such as developer bias 
voltages, and rendering algorithms, such as tone correction, to 
maintain consistent tone reproduction.  Calibrations cause job 
interruption and consume toner.  Although desirable for 
maintaining tone consistency, frequent calibration increases the 
cost of ownership and negatively impact the customer’s bottom 
line. 

Calibration results in additional toner use and process 
downtime and is regarded as a cost from a customer point of view.  
For most EP systems, calibration strategies are either reactive or 
preventive [6, 7].  Preventive calibrations are scheduled after a 
fixed number of printed pages while reactive calibrations are 

initiated when undesirable outputs are observed.  Preventive 
calibration is inefficient when a scheduled calibration is performed 
while the tone deviation is still within specification.  Reactive 
calibration is inadequate due to the fact that an out-of-specification 
tone deviation has been observed.  A more efficient and accurate 
calibration timing can decrease operation cost by reducing 
downtime and toner usage associated with calibration while 
maintaining desired tone consistency. 

This work formulates the calibration timing determination as 
a decision making problem (see Fig. 1).  At a decision point in 
time, the appropriate calibration action for compensating tone 
deviation is estimated using decision trees (DT).  To carry out the 
approach, experiments are conducted to collect tone measurements 
on paper under various operating conditions.  Decision trees are 
developed with these measurements using machine learning 
algorithms.  The inputs to DTs are operating conditions of the 
printer, such as temperature, humidity, cartridge age, usage, 
developer bias voltage, and changes in the operating conditions.  
The output from DTs is a binary calibration decision, to calibrate 
or not to calibrate, based on experimental tone deviation.  During 
actual operation, the DTs can predict appropriate calibration 
actions with only measurable operating conditions and no tone 
measurements are needed. 

 

 
Figure 1. Scheme of decision-tree-based calibration approach. 

Decision Tree 
Decision trees are empirical predictors that have been widely 

implemented.  Decision trees can be used to determine appropriate 
maintenance actions of a device/process for given events.  For 
example, they can be used to determine performing calibration or 
not for given changes in temperature, humidity, and/or cartridge 
life.  Decision trees are constructed by machine learning 
algorithms.  These algorithms iteratively create a sequence of if-
then-else tests arranged as nodes in a tree structure.  A decision 
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tree is composed of a root node, internal nodes, and final nodes 
(see Fig. 2).  Each internal node (including the root node) of the 
tree represents a test associated with an input attribute, e.g., 
temperature.  At a decision point in time, the input attribute values 
are measured and fed into the DT.  Tests are performed in the tree 
nodes, starting from the root node and ending when the process 
reaches one of the final nodes.  In each test, the current value of an 
input attribute specified by the test is compared with the node 
branching value to select the branch for advance.  By branching 
forward throughout the tree until a final node is met, the best 
calibration action is asserted and applied.  Note that, while 
proceeding along the tree branches, not all input attributes are 
necessarily checked throughout the process.  For example, in the 
very right branch in Fig. 2, the input attribute temperature is not 
checked. 

 
Figure 2. An example decision tree. 

Method 
Let x(t) = [xi(t)] ∈ ℜm denote a set of operating conditions of 

an EP printer at a point in time t ∈ ℜ, and y(t) = [yi(t)] ∈ ℜn 
denote the measured tone values at a set of pre-determined 
halftone levels.  Suppose the EP system was calibrated at a 
previous time t1.  As time goes by, the operating condition varies 
from x(t1) to x(t2), where the t2 is current time and t2 > t1.  
Consider that the change in operating condition results in tone 
deviation Δy(t2, t1) = [Δyi(t2, t1)] ≡ y(t2) − y(t1) ∈ ℜn, where each 
Δyi corresponds to a pre-determined halftone level.  At the current 
time t2, a calibration is necessary to bring the output tone value 
back to desired target if some metrics of the tone deviation Δy are 
larger than a threshold; otherwise, no action may be taken.  The 
objective of this work is to develop a decision making module f in 
the form of a DT that determines appropriate calibration action at 
the current point in time t2 when given the current and past 
operating conditions as inputs to the DT, i.e., 

c = f (x(t2), x(t1)), (1) 
 
where c ∈ {calibration, no calibration} is a calibration action.  

Note that alternative DT inputs can be used.  Denote 
Δx(t2, t1) = [Δxi(t2, t1)] ≡ x(t2) − x(t1) ∈ ℜm as the difference 
between the two operating conditions measured at the current time 
t2 and the past time t1.  Equation (1) can be re-formulated as 

c = f (x(t2), Δx(t2, t1)). (2) 
 

In this work, a separate DT is developed for each primary 
color.  Assuming interactions between primary colorants is 
minimal, the same procedure can be applied to all primary colors 
since each of them is reproduced independently on in-line color EP 
printers.  The proposed DT development process comprises four 
steps – experiment design and data collection, training sample 
composition, DT growth, and DT pruning. 

Experiment Design and Data Collection 
Experiments are designed to collect data for DT development.  

Controllable EP variables, measurable environmental parameters, 
and consumable factors that are significant to EP process 
performance can be selected as control variables.  Typical control 
variables can include developer bias voltage, temperature, 
humidity, usage duty cycle, or cartridge life.  Note that on-board 
color patch measurements [3-5] are not included as control 
variables since they are only available during calibration. In the 
experiment design, the setup points of each control variable should 
cover a broad range of conditions encountered in typical customer 
usage. 

The data collection procedure is as the follows.  During an 
experiment, EP printers are operated under a controlled condition 
x.  Tone correction and calibration are bypassed.  Once a steady 
operating condition is reached, primary color patches are printed 
on output media.  The corresponding tone value y is measured off-
line using a calibrated instrument, such as a spectrophotometer.  
The tone value y and its corresponding operating condition x is 
collected and recorded in a database. 

Training Sample Composition 
Training samples for DT development are composed from the 

data points collected under different conditions.  Two data points 
[x(tk) y(tk)] and [x(tj) y(tj)], where tk > tj, are selected from the 
database.  Here, we rewrite x(tk) as x(k), and y(tk) as y(k) for 
simplicity.  The point [x(k) y(k)] represents the current operating 
condition and tone value, and the point [x(j) y(j)] represents the 
operating condition and tone value at a previous calibration.  A 
training sample is composed of the current operating condition 
x(k), the difference between the two operating conditions Δx(k, j), 
and the calibration action c(k, j).  The calibration action c(k, j) is 
determined by comparing the absolute weighted mean tone 
deviation ( , )d k j

w
 to a threshold δ ∈ ℜ, i.e., 
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c represent the class labels “calibration” and “no 
calibration,” respectively.  The absolute weighted mean tone 
deviation is defined as 
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where w = [wi] ∈ ℜn is a weighting vector.  Each entry in w 
corresponds to a unique halftone level.  Larger entry values can be 
assigned in wi to further penalize the tone deviation Δyi at the 
corresponding halftone levels.  The threshold δ is usually 
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determined based on tone consistency requirement and the 
performance limitation of EP printers.  

Restrictions may be applied to screen out training samples 
that are not applicable under normal operation.  For example, in 
typical customer usage, cartridges are used until the end of their 
lives.  Data points that are not from the same cartridge are not used 
to compose training samples.  The training sample composition 
and selection proceed until all the possible combinations of data 
points have been examined. 

Decision Tree Growth 
Decision trees are developed starting from the root node with 

the training samples in a top-down manner.  In each training 
sample, the entries of the current operating condition xi, and the 
entries of the difference between the two operating conditions 
Δxi are attributes.  The calibration action c is the class label.  The 
main task in the DT growth is to recursively find an appropriate 
attribute for each test (internal node) with which the training 
samples are split into subsets.  This study uses the C4.5 machine 
learning algorithm [8] for DT growth.  C4.5 evaluates attributes 
based on information entropy.  Let D  denote a set of training 
samples.  Suppose there exist q ∈ N different possible (calibration 
action) classes 

i
c , where i = 1,…, q.  The information entropy 

( )h D ∈ ℜ of the set D  is defined as 

2

1

( ) ( , ) log ( ( , ))
q

i i

i

h p c p c
=

≡ − ⋅∑D D D ,  (4) 

where ( , )
i

p c ∈ℜD  denotes the proportion of samples in the set 
D  that belong to the class 

i
c , and ( , ) 1

ii
p c =∑ D .  The 

information entropy is a measure of randomness of the sample 
class in a set.  A smaller information entropy indicates that a larger 
majority of the samples in the set belong to the same class.  Note 
that the information entropy is always larger or equal to zero.  
When all the samples in a set belong to a single class, there is no 
uncertainty and the information entropy is zero. 

A test on an effective attribute should reduce the overall 
information entropy of the split subsets.  C4.5 evaluates all the 
attributes and chooses the one that gives the maximum reduction 
in information entropy.  Let α ∈ {xi, Δxi} denote an attribute.  
Consider α  as a discrete-valued attribute with r ∈ N different 
values, i.e., α = α1,…, αr ∈ ℜ.  Usually r is a small number.  A 
test on α  partitions the set D  into mutually excluded subsets 

1
, ...,

r
D D , where 

i
D  is the subset of training samples associated 

with attribute value αi.  The weighted sum of information 
entropies over the subsets for the attribute α is defined as 
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where di ∈ N denotes the number of training samples in the subset 
i

D , and 
ii

d d= ∑ ∈ N  denotes the number of training sample in 
the set D .  Information gain ( , )g αD ∈ ℜ for the test on the 
attribute α is defined as the reduction in information entropy, i.e., 

( , ) ( ) ( , )g h hα α≡ − ∈ℜD D D . (6) 

Decision Tree Pruning 
The DT built in the growth stage can be complex due to noise 

in the training data set.  The goal of the prediction, however, is to 
determine appropriate calibration action for unseen cases.  Pruning 

mechanism generalizes DTs to improve their accuracy by 
removing tests corresponding to noise that may be particularly 
only included in the training data set.  Define a subtree as a branch 
of a fully developed DT associated with one internal node and 
some final nodes.  Pruning algorithms check the DT from bottom 
to top to determine whether or not a subtree should be replaced 
with a final node. 

Several pruning methods have been introduced in the 
literature.  Some of them have been developed to minimize error 
rates of DTs.  However, in some other applications, DT prediction 
errors are associated with different costs (or penalties).  Define a 
false negative error as the mis-prediction of failing to perform a 
calibration when the tone deviation is actually larger than the 
specified threshold, and false positive error as the mis-prediction 
of failing to restrain a calibration when the tone deviation is 
actually smaller than the threshold (see Table I).  From a color 
consistency point of view, the false negative error leads to 
undesired tone variation and should be prevented.  On the other 
hand, if consumable economy is the top priority concern, the false 
positive error should be avoided.  The cost of making a false 
negative error can be substantially higher or lower than that of 
making a false positive error, depending on different 
considerations.  A cost-based pruning algorithm is applied in this 
work to provide a way for trading-off between different error 
costs. 

Table I: Two types of calibration errors 

Decision-tree-
predicted state 

True state 

Need calibration Do not need 
calibration 

No calibration False negative 
error - 

calibration - False positive 
error 

EXPERIMENT 
The proposed DT-based calibration timing determination 

approach is performed on an off-the-shelf in-line color EP printer.  
Calibration and tone correction are bypassed during the 
experiment to prevent the resulting tone variation.  The operating 
condition x includes developer bias voltage (DBV), cartridge life 
remaining (CLR), relative humidity (RH), and temperature (T).  
The DBVs are denoted in percentage between 0 and 100%, where 
0% represents the lowest admissible voltage and 100% represents 
the highest admissible voltage.  The CLR ranges between 0 and 
100%, where 0% represents an empty cartridge and 100% 
represents a new one. 

The operating condition setup points are as the follows.  The 
experiment is performed with four DBV setup points at 0%, 33%, 
66%, and 100% of the admissible voltages.  Eight different T and 
RH setup points that cover extensive environmental condition (15 
to 30°C and 30 to 80% RH) in typical customer usage are chosen.  
The number of environmental conditions in the current design is 
subject to the cost of the experiment.  More T and RH setup points 
may be included in the design to provide further comprehensive 
data for DT development when desirable.  Figure 3 shows the 
eight T and RH setup points in a psychrometric chart. 
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Figure 3. The eight temperature and humidity setup conditions in a 
psychrometric chart. 

Historic printer usage data from a print quality project [3] 
conducted at Purdue University is used to estimate the potential 
calibration frequency reduction when the proposed method is 
applied.  In the project, printers were located under typical office 
environments.  Their operating conditions were collected every 
few hours and were stored in a database.  The simulation is 
conducted with the data collected on a printer between November 
2005 and October 2006.  The printer produced more than 180,000 
pages with 15 sets of cartridges during this period. 

The calibration criteria of the proposed and existing 
calibration timing determination algorithms are as the follows.  
The proposed algorithm triggers a calibration whenever a new 
cartridge is inserted, whenever the output of any primary color DT 
is “calibration”, or whenever any cartridge has its 20% CLR 
consumed.  The last criterion for the proposed algorithm is given 
because the maximum CLR difference of the training samples is 
20%.  Any unseen cases with CLR difference larger than 20% are 
beyond the knowledge stored in the DTs; hence a calibration 
should be enforced.  The existing algorithm triggers a calibration 
whenever a new cartridge is inserted or whenever any cartridge 
has 10% of its CLR consumed.  Note that the existing algorithm 
does not consider tone variation due to changes in environmental 
condition. 
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Figure 4. Calibration frequency versus different cost ratios. 

The calibration events from the simulation are categorized 
into two groups: new cartridge calibration and other types of 
calibration.  This is because new cartridge calibration is necessary 
for purposes of color plane registration and should not be included 

in the comparison.  Figure 4 shows the numbers of other types of 
calibration with the proposed and existing approaches.  It shows 
that, with unity pruning cost ratio, the proposed approach can save 
48.4% of the other types of calibration while the color consistency 
of the EP printer is guaranteed.  The overall saving in calibration 
frequency is 30.9%. 

CONCLUSION 
Traditional preventive calibration strategy results in waste in 

consumables and interruption to print jobs.  This motivates using a 
knowledge-based approach to reduce calibration frequency for 
color EP printers while maintaining desirable tone consistency.  In 
the approach, experiments are designed to collect tone 
measurements under various operating conditions.  Decision trees 
are developed with these measurements using machine learning 
algorithms.  The effectiveness of the proposed calibration timing 
determination method is verified with historic data.  Simulation 
shows that the proposed method can reduce the total calibration for 
an office printer by 30.9% while the color consistency is 
maintained. 
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