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Abstract 
Manufacturing equipment for single-pass digital printing 

faces an interesting challenge to deal with the growing 
productivity demand in combination with rising droplet 
registration accuracy. Although the administration speed of print-
heads is still rising, high throughput speeds and/or increased print 
resolution can only be achieved by using multiple heads in series. 
Given at least 4 different inks, the distance between the first and 
last print-head can become more that a meter. When the relative 
registration accuracy over such a distance must be less than 10 
micrometer, an intense fusion of multiple engineering disciplines 
becomes essential. In order to eliminate the mechanical (e.g. 
elasticity) properties of the substrate, a steel belt conveyer using 
vacuum technology for substrate clamping is introduced. Many 
conventional steel belt conveyors and their steering systems can’t 
meet the previously mentioned accuracy target. By introducing 
actuated Axially Movable Segments Rolls (AMSR), the 2 surface 
orientations (X, Rz) of the belt (and therefore the substrate) can be 
continuously controlled, without deformation of the belt. On both 
sides of the rolls there are reluctance force actuators for segment 
manipulation. During rotation, the belt (always) will translate 
axially with respect to the segments that are in contact due to given 
limitations in belt and/or roll manufacturing (e.g. accuracy of the 
weld perpendicularity). The actuated AMSRs compensate this 
translation, based on the measured belt position. Once per 
revolution, when the segment is not in contact with the steel-belt, it 
will be actively positioned back to its ‘center’ position to minimize 
disturbances in the system. A demonstrator has been build to 
validate the actuated AMSR technology. 

Introduction 
With the continuous improvement of the print-head’s jetting 

accuracy, registration deviations of subsequent droplets from 
independent heads must also become smaller. CCM is well 
acquainted with the mechatronic challenges that are encountered 
during the development of inkjet printing equipment for customers. 
It became clear that a generic solution for accurate transport of 
substrates is mandatory to reach the next level of jetting quality.  

For applications with a fixed array of print-heads there is a 
distance between independently generated droplets. In 
conventional systems the substrate is manipulated directly along 
the print heads, like illustrated in Figure 1.  

During transport from the ‘first’ droplet location to the ‘last’ 
adjacent droplet location, the combination of limited substrate 
stiffness and all kind of forces will introduce lateral and 
longitudinal (illustrated) disturbances in color registration. In other 
words, when the substrate can move freely, one should take 
exceptional precautions regarding substrate steering and driving, in 
many cases still resulting is unsatisfying results. 

Figure 1: Drop alignment artifacts due to substrate transport; registration error 
after substrate tension variation [1] results in ‘banding’ [2] 

Approach 
Prior to finding an improvement for color registration, 

different ‘target’ materials to be printed have been inventoried. 
One can think of sheet-to-sheet transport of paper, cardboard, 
plastic, MDF and other semi-rigid material. For roll-to-roll 
applications paper, plastic and other non-rigid material must be 
handled.  

A commercially available conveyor system with a suction 
area right below the color engine1 like illustrated in Figure 2 seems 
an obvious (cost effective) concept to carry the previously denoted 
list of substrate types. 
Based on CCM experiences and measurements, the motion 
accuracy of a mandatory transport concept should meet a planar 
accuracy of less than 10 µm over a length of 1 m at a transport 
speed up to 2.5 m/s. That is why the high young’s modulus 
properties of enert and easy cleanable stainless-steel were tempting 
to serve as a carrier. 

 
 
                                                                 
 
 
1 The color engine represents a subsequent series of 

color bars, each holding multiple print heads. 
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Figure 2: Conveyer belt transport concept, also showing applicable coordinate 
system  

Conventional conveyor systems 
Due to the high material stiffness, steel belt conveyors have 

excellent motion accuracy properties in the transport-direction (Y).  
However, achieving high motion accuracy in the lateral direction 
(X) proved to be the greatest challenge in steel belt transport. CCM 
already has done research in belt steering systems [1] prior to 
getting involved in inkjet equipment development. This research 
shows that geometric imperfections of a belt or its rollers cause 
internal stresses in a conveyor belt. Partly due to these internal 
stresses the belt will move in the lateral direction when 
transported. Eventually it will run off its transport rolls. Therefore 
a steering mechanism is mandatory. Currently available steering 
systems introduce lateral translation in the printing area, like 
illustrated in Figure 3. Furthermore conventional steering concepts 
introduce stresses in the belt that cause longitudinal deviations.  

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Conventional steering mechanisms introduces both stretch of the 
belt [1] and deflection in the printing area [2] 

Axially Movable Segmented Roll (AMSR) 
In [1] is explained that an infinite belt motion will introduce 

infinite (lateral) belt translation. In order to compensate for this 
effect, the rolls in Figure 4 are deliberately cut into segments. Each 
segment can move independently in lateral (X) direction by means 
of mechanical guides. By introducing these axial movable 
segments (AMS) the existing infinite lateral motion will be 
chopped into steps per active2 segment. In Figure 4 this principle is 
visualized in 4 steps of rotation, starting with an inactive roll. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Axially movable segments during rotation 

The introduction of AMSR solely, can prevent undesired belt 
behavior like illustrated in Figure 3. However, it doesn’t improve 
the belt straightness performance, defined in 

 
Figure 5. The guide for the axial motion of the segment has a 

relevant stiffness. During the active part of the rotation, this spring 
is tensioned because of the segment movement. 
At the red arrow marked location in Figure 4, this tension 
disappears almost instantaneously when the segments becomes 
inactive. 

 

 
Figure 5: Definition of straight-line accuracy  

The energy stored in the spring is suddenly released. Integral 
axial stiffness of the remaining active segments will be preloaded 
at once, thus introducing undesired lateral vibrations. 

 
 
 
 
 

                                                                 
 
 
2 Active means that the segment is physically in contact 

with steel belt 
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Figure 6: Visualization of AMS guiding stiffness 

Actuated AMSR 
Like other motion control systems, direct measurement and 

actuation of the belt edge in the printing area is preferred since it 
allows continuous control of the belt position, and subsequently the 
substrate position. Figure 7 illustrates how relevant degrees of 
freedom can be controlled without indirect relations with transport 
velocity.  

When an actuator system for the ‘set’ (green) segment is 
introduced, accurate control of the belt position is possible. An 
additional actuator for the ‘reset’ (red) segment can be used to 
control for the release of stored energy in the guides, described in 
the previous paragraph. 

A comparison of Lorentz and reluctance type of actuators 
showed that the latter offered the best integral compromise of non-
recurring costs and performance. It must be mentioned that the 
nonlinear properties of a reluctance actuator, has required extend 
research. 

Motion control 
 In Figure 8 an overview of actuators, sensors and the 

controller is given. The SAXCS3 inspired control architecture 
consists of mainly 2 parts. The first part controls the force 
mechanism of Figure 4. The lateral motion of the segments is 
measured by gap sensors which are required for the force control 
loop of the reluctance actuators. This information, combined with 
the known stiffness of the segment guiding, can be used to predict 
the lateral force at any moment.  

Through biasing of that segment which will almost become 
free from the belt, an undesirable step force is avoided. 

This partly model based approach cannot cope with variations 
in mechanical properties of the segment guiding or force constant 
of the actuator. Therefore an additional repetitive control algorithm 
was added. 

 
 
 
 
 
 
 

                                                                 
 
 
3 Smart And fleXible Control Solutions:  www.saxcs.nl 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7: Preferred actuation concept, using actuators [A] the belt can be 
controlled in Rz and X. Measurement through [S] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8: Control architecture, visualizes drives [D], the Y actuator [AY] and 
different layers 

During every revolution of the roll it gradually ‘learns’ model 
mismatches and compensates for it via slightly adjusted force feed 
forward. 

The second part controls the X,Y and Rz positions of the belt. 
The X and Rz positions are both calculated from the combined 
output of two belt edge sensors X1 and X2. A transformation 
matrix is used to derive X and Rz. Due to the manufacturing 
process of the belt; the belt edge contains reproducible artifacts 

A 
S S 

A 

A 
S 

A
S

A A 

A A 

X

Y Z

‘Set’  

‘Reset’  

S S 
 

Configurable I/O block 

  

AY 

D D D D 
D 

 

S 
X1 X2

Y 

Belt position control layer 

Actuated AMSR control layer 

224 ©2012 Society for Imaging Science and Technology



 

 

with amplitudes beyond the accuracy budget. An identification 
sequence is performed for each new belt to determine the relation 
between longitudinal and lateral belt information.  The resulting 
lookup table is then used to compensate for all belt edge artifacts.  

 The Y controller can use either position information 
directly measured at the belt (marked Y in Figure 8) or it can use 
position information derived from the rotational encoder which is 
part of the driving roll. Sensor Y is optical and interprets a laser 
engraved bar-pattern on the steel belt.  

Demonstrator results 
In order to test the feasibility and expected accuracy of the 

proposed solution with actuated AMSR rolls, the Generic Substrate 
Carrier (GSC) demonstrator was built and is shown in the figure 
below. 

 

 
Figure 9: Generic Substrate Carrier demonstrator 

To determine the lateral accuracy, the position difference of 
the belt edge was measured over the work area of 900 mm. By 
using the output of both belt edge sensors, shifted over the work 
area length, a power spectral density analysis (PSD) is performed 
to visualize the 3σ value of the lateral accuracy. 

First the accuracy of the actuated AMSR control was 
measured without compensating for the previously described 
“reset” segment vibrations. Next, the measurement was repeated 
with the proposed spring stiffness compensation and learning 
controller activated. Figure 10 shows the PSD analysis results for 
both situations.  As can be seen in the figure, the accuracy has 
improved drastically by using a these compensation techniques. 
With it, a lateral accuracy of almost 15 µm was achieved with this 
first demonstration prototype. In longitudinal direction accuracy 
far below 5 µm has been measured! Also, print tests have been 
performed with a full-color inkjet module installed onto the GSC. 
The results of the output prints are significantly better than 
conventional systems, even with speeds up to 2.5 m/s. 

 

 
Figure 10: 3σ cumulative PSD of lateral accuracy  

Together with DJM4 the demonstrator was exhibited during 
the Drupa 2012 fair in Dusseldorf. Motivated by the enthusiasm of 
interested parties, CCM is now designing a Generic Substrate 
Carrier for series production. With the lessons learned from the 
demonstrator, the successor will be able to meet lateral accuracy 
below 10 µm. In parallel CCM will deploy a roll-to-roll application 
to serve single-pass substrate printing. 

Conclusions 
Substrate tension variation and external disturbances become 

a major problem due to the limited stiffness of the substrates. To 
overcome this problem a steel-belt conveyor is introduced on 
which the substrate is fixated with vacuum clamping during the 
complete print process. An advanced belt steering concept has 
been developed based on actuated Axially Movable Segmented 
Rolls (AMSR). The demonstrator of this technology has been 
successfully exhibited on the Drupa fair 2012. A series product is 
designed now. 
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