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Abstract
To design faster and safer printers with scorotron, it should

be highly effective in charging of rotating optical photoconduc-
tor (OPC). In high speed printings, the time scale of rotation
and charging competes and the charging processes goes to transi-
tional. So, we have to understand dynamics of charging processes
for effective charging scorotron. But, the dynamics of charging of
rotating OPC by scorotron is not well understood. The authors
have recently developed a numerical model of the dynamics of
charging rotating OPC and ionic wind by positive DC scorotron.
The calculation by the model well reproduced the measured elec-
trostatic potential on rotating OPC and velocity of ionic wind in
steady state. The authors show how electrostatic potential on ro-
tating OPC and charge density distribution change with time. The
authors also show that the charging time scale by the model.

Introduction
Highly effective charging positive DC scorotron is needed

in high speed printing. Staying time of OPC under scorotron
decreases with increase of printing speed, the charging time de-
creases in high speed printing. Addition to this, in the corona
plasma region near wire of scorotron, ozone is produced by chem-
ical reactions [1] and transported through ionic wind[2] [3] [4] [5]
[6]. Corona current produced by scorotron should be as small as
possible, because the production speed of ozone depends linearly
on corona current[1]. In high speed printing, the charging pro-
cesses will be transitional. For effective charging in high speed
printing, it is very important to understand the dynamics of charg-
ing rotating OPC. Evaluating the time dependence of current and
potential on rotating OPC, charging speed and its dependence on
corona current will be effective in designing scorotrons. But the
dynamics of charging processes are not easy to measure, because
time scale of charging is so small.

The numerical simulation is a candidate tool to directly eval-
uate dynamics of charging on rotating/non-rotating OPC. Though
numerical models of potential on rotating OPC surfaces charged
by negative corotron and scorotron are proposed in [2] [3] [4] [5]
[6], they are formulated in steady state, so charging speed cannot
be evaluated. The time dependence of electrostatic potential on
OPC surface is modeled by Schaffert, but the model needs two
experimental parameters[7].

In Theory, the authors show a dynamical model of charging
on rotating/non-rotating OPC and the ionic wind. In Validation,
the authors compare calculated and experimental electric potential
of rotating OPC and ionic wind for validation of the model. In
Results and discussion, the authors show time dependence of
potential near scorotron and on OPC, charge density distribution
by numerical simulation. The authors derive charging speed from
time dependence of calculated potential on non-rotating OPC by

fitting. In Conclusion, the authors summarize the results.

Theory
The authors model the charging dynamics of rotating OPC

in three steps (fig.(1)). In the first step, near the wire, the positive
ions are produced in corona plasma region. In the second step, the
positive ions are transported to surface of OPC by electric field
and airflow. In the third step, the positive ions accumulate on the
surface of rotating OPC.
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Figure 1. Schematics of the charging dynamics

In the first step, the authors model the production of positive
ions as the electric current source existing on the wire surface.
The distribution of positive ions is described as volumetric charge
density. Charge density on the wire ρ0 is written as follows,

ρ0 =
I

2πa�kE0
, (1)

where I,a, �,k,E0 are corona current, radius and length of wire,
mobility of positive ions and the electric field strength on the
wire surface respectively. In eq.(1), the authors assumed the
charge density is uniform around the surface of the wire. Sarma’s
assumption[8] is used for E0, which is kept constant during dis-
charge. E0 is described by the Peek’s law [1] [9],

E0 = 3×106e

(
δ +0.03

√
δ
a

)
(V/m), (2)

where e is surface roughness and radius of the wire, and δ is rel-
ative density of air. Throughout this paper, the authors set δ = 1.

In the second step, the authors model transfer of positive ions
as flow of volumetric charge density, driven by the electric field
and air flow. The electric field in the scorotron, between OPC and
the grid of scorotron is described as Poisson equation,

∇ · (ε0∇φ) = −ρ, (3)

where ε0 = 8.85×10−12A2s4/(kgm3),φ ,ρ is electric permittiv-
ity of vacuum, electrostatic potential and volumetric charge den-
sity. The flow of charge density is described as equation of charge
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conservation,

∂ρ
∂ t

+∇ ·J = 0, (4)

J = ρ(−k∇φ +U), (5)

where J,U is the current density and the velocity of ionic wind
respectively. The dynamics of ionic wind is described by Navier-
Stokes equation,

∂U
∂ t

+U ·∇U = −ν∇2U−∇pk −
ρ∇φ
ρair

, (6)

where pk,ν,ρair is kinematic pressure, kinematic viscosity and
density of air respectively.

In the third step, the authors model the dynamics of charge
accumulation on surface of rotating OPC as follows,

∂σ
∂ t

+(ω ×r) ·∇σ = −J ·n, (7)

where σ ,ω,r,n is surface charge on OPC, angular velocity vec-
tor of OPC, position vector from center of OPC to its surface and
the normal vector on the surface of OPC. In eq.(7), the authors ig-
nored the leak current. In cylindrical coordinate frame with origin
located at the center of OPC, eq.(7) can be rewritten as follows,

∂σ
∂ t

+ω
∂σ
∂θ

= −J ·n, (8)

where θ is the azimuthal angle(drawn at 3 in fig.(1)). In non-
rotating case ω = 0, eq.(8) reduces to

∂σ
∂ t

= −J ·n. (9)

Assuming OPC as capacitor, electrostatic potential on OPC
Vopc(θ ) is written as follows,

Vopc(θ ) =
εrε0σ
dopc

, (10)

where εr,dopc is relative electric permittivity and the thickness
of photosensitive layer. The Vopc is used as boundary condi-
tion for solving Poisson eq.(3). The authors implemente the
model as numerical simulation program, using source codes of
OpenFOAM R©, the open source CFD toolkit[10]. Throughout
this paper, the authors use the physical parameters as listed in
tab.(1).

Table 1:Physical parameters

Mobility of positive ions k = 1.6×10−4m2/(V · s)
Roughness of wire surface e = 0.65
Radius of wire a = 60(μm
Voltage of Grids VG = 700(V)
Thickness of photosensi-
tive layer

dopc = 30(μm)

Relative permittivity of
photosensitive layer

εr = 3

Kinematic viscosity of air ν = 1.55×10−5m2/s
Density of air ρair = 1.185(kg/m3)

ω
ropc=15mm

V0 Vs

Figure 2. Experimental and calculated potential on rotating OPC.

Validation
To validate our model of charging, the authors compare the

corona current dependence of calculated and measured potential
of rotating OPC after charging. In experiment, the authors mea-
sured potential on OPC after charging (denoting it as Vs) with
corona current I/� = 375,750,1500(μA/m). The sketch of ex-
periment is drawn on left bottom of fig.(2). In simulation, the
authors take the solution of eq.(10) in steady state with the angle
θ = 30(deg) (there located detector) as calculated Vs. The authors
take the solution at t = 0.2(s) as steady state in practice. We see
the calculation well reproduce the angular velocity dependence
and corona current dependence of measured Vs. This indicates
that our model well describes steady state of OPC charging.

To validate our model of ionic wind, the authors compare
the corona current dependence of calculated and measured veloc-
ity of the ionic wind at sampling point of 1mm above the wire
(see fig.(3)). In experiment, the authors measured velocity field
of ionic wind by particle image velocimetry. The authors draw
the velocity |U| of the solution at time t = 0.2(s) when the flow of
ionic wind is in stationary state. We see that the measured corona
current dependence of velocity is well reproduced by calculation
(fig.(3)).

a=60μm

sampling point
1mm

Figure 3. Experimental and calculated velocity of ionic wind 1mm above

wire.
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Results and discussion
The authors discuss the time dependence of calculated elec-

tric potential, potential on rotating/non-rotating OPC and charge
density with corona current I/� = 375,750,1500(μA/m). In
fig.(4), the electric potential contours are drawn in the case with
corona current I/� = 1500(μA/m). In non-rotating OPC(ω =
0(rad/s)), the potential between grid and OPC evolves sym-
metrically with the wire of scorotron. In rotating OPC(ω =
10.47,20.94(rad/s)), the potential on OPC downward of rotation
evolves with time and upward doesn’t. This results in asymet-
ric shape of potential contour. The asymmetry is larger in slower
rotation(ω = 10.47(rad/s)).

ω=20.94(rad/s)

ω=10.47(rad/s)

ω=0(rad/s)

t=0.01(s),    0.1(s),       0.2(s)     

t=0.01(s),    0.1(s),       0.2(s)     

t=0.01(s),    0.1(s),       0.2(s)     

ω ω ω

ωωω

Figure 4. Time dependence of electric potential contour with rotat-

ing (ω = 10.47,20.94(rad/s)) and non-rotating (ω = 0(rad/s)) OPC. On top-

middle-bottom raw of the figure, angular velocity is set ω = 20.94(rad/s),

ω = 10.47(rad/s) and ω = 20.94(rad/s) respectively. One left-center-right col-

umn of the figure, time is set t = 0.01(s), t = 0.1(s) and t = 0.2(s). Contour

lines are draw by every 100(V).

In fig.(5), time dependencess of potential distributions on
OPC with angular velocity ω = 0,10.47,20.94(rad/s) are shown.
In rotating OPC, as the peak position of the potential moves, the
height grows with time and finally the distribution reached sta-
tionary state. We see that increasing the angular velocity ω results
in the decrease of time to reach stationary states and the height of
potential. The higher rotation means that staying time of OPC un-
der scorotron and accumulated charge on OPC get smaller. There-
fore, the time to reach stationary state decreases with angular ve-
locity increasing. This results in the decrease of the potential on
OPC. In non-rotating OPC, the peak position of the potential re-
mains and the height and width grow with time. We see that the
growth speed of the height of potential increases with corona cur-
rent and depends on angle θ .

In fig.(6), time dependence of charge density are shown in
the case with corona current I/� = 1500(μA/m). We see that
the charge density distribution changes with time and angular ve-
locity. In non-rotating case (ω = 0(rad/s)), the charge distribution

1500(μA/m)

750(μA/m)

350(μA/m)

I/l 

Figure 5. Time dependence of electric potential on rotating and non-rotating

OPC. On top-middle-bottom raw of the figure, corona current is set I/� =

1500(μA/m), I/� = 750(μA/m) and I/� = 375(μA/m). One left-center-right

column of the figure, angular velocity is set ω = 0, ω = 10.47(rad/s) and ω =

20.94(rad/s).

gets wider with time. This is due to charge accumulated on the top
of OPC(=θ = 90(deg)). Then, the electric field between grid and
top gets smaller(fig.(4)) and charge flows onto slightly different
point on OPC. Continuing this cycle, the charge density distribu-
tion gets wider. In rotating case, the charge density is dense in
upward of rotation and sparse in downward. As the point on OPC
downward of rotation is already charged and upward is not, the
electric field between grid and the point on OPC upward of rota-
tion is stronger than that of downward (fig.(4)). This is the reason
why the asymmetric charge density appears in rotating case.

ω=20.94(rad/s)

ω=10.47(rad/s)

ω=0(rad/s)

t=0.01(s),    0.1(s),       0.2(s)     

t=0.01(s),    0.1(s),       0.2(s)     

t=0.01(s),    0.1(s),       0.2(s)     

ω ω ω

ωωω

Figure 6. Time dependence of charge density with rotating (ω =

10.47(rad/s),20.94(rad/s)) and non-rotating (ω = 0(rad/s)) OPC. Angular ve-

locity is set ω = 20.94(rad/s) on the top, ω = 10.47(rad/s) on the middle and

ω = 20.94(rad/s) on the bottom raw of the figure. Time is set t = 0.01(s) on the

left, t = 0.1(s) on the middle and t = 0.2(s) on the right column.
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In fig.(7), the time dependence of potential on non-
rotating OPC Vopc(θ = 90(deg)) with corona current I/� =
375,750,1500(μA/m) is shown. The authors show time depen-
dence of Vopc(θ = 90(deg)) is well fitted with the function,

f (t) = V0(1−exp(−t/τ)/(1−C exp(−t/τ)), (11)

where V0,C,τ is potential in steady state, non-dimensional con-
stant and time constant. This function f (t) is similar to the model
of Schaffert[7]. He modeled the potential on OPC globally (θ de-
pendence of potential is not modeled). In the right side of fig.(7),

1500(μA/m): V0=765, 1/τ=13.7, C=0.535
750(μA/m): V0=731, 1/τ=11.8, C=0.448
375(μA/m): V0=700, 1/τ=10.37, C=0.289

Fitting coefficients

Figure 7. Calculated time dependence of potential on non-rotating OPC

Vopc(θ = 90(deg)) and fitted curve(corona current I/� = 375,750,1500(μA/m)).

the fitting parameters V0,C,τ are shown. We take typical charg-
ing speed as 1/τ and show the corona current dependence of it
in fig.(8). We see the charging speed 1/τ increase slowly with
corona current of I/� = 375(μA/m)−1500(μA/m).
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Figure 8. Time constant τ of non-rotating OPC Vopc(θ = 90(deg)).

Conclusion
The authors have modeled the dynamics of charging OPC

and ionic wind. Calculated results by the model well reproduced
corona current dependence of the potential on rotating OPC and
the velocity of ionic wind in steady state. The authors have
shown the time dependence of potential around scorotron, on
rotating/non-rotating OPC and charge density distribution. The
authors have show charge density distribution between grid and
OPC changes with time in rotating/non-rotating case. The au-
thors have derived charging speed as inverse of time constant 1/τ
and its dependence of corona current.
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