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Abstract

Detailed analysis of electro-photographic processes requires
modeling of individual particles with DEM models. On the other
hand, mixing of toners require analysis of billions of particles
which is not practical to analyze using DEM models. One can
employ continuum models for solution of such problems. The
objective of this development is to couple both types of analyses.
DEM models are used in regions which require modeling of
microscopic properties of material in one region and continuum
models are used to model macroscopic behavior of billions of
particles at another. These two models are then analyzed in
coupled  form. Applications of both models have been
demonstrated individually [1, 2]. In this paper only the coupling
of these two models is presented. The above approach enables
solution of problems such as coupling of mixing region in a printer
with charging, development, transfer etc.

Another issue presented in this paper is the determination of
macroscopic properties of the continuum model which is a difficult
problem. These material properties are determined by comparing
the results of the DEM model with the continuum model for simple
experiments.

The example problem analyzed in this paper is the feeding of
a charging blade with a roller, where mixing is occurring
simultaneously with a pedal of larger dimensions.

Introduction

Modeling of toner mixing process involves billions of toner
particles. It is not practical to model them using DEM due to
restrictions in computer resources and time to compute. One can
model such problems using continuum models where toner is
modeled as a Non-Newtonian material [1]. On the other hand
most of the electro-photographic processes such as development or
transfer occur at a microscopic level where individual motion of
each toner particle has to be calculated [2]. While dimensions
involved in such processes are at the micron level, mixing analysis
involves dimensions specified by millimeters. One has to couple
these two types of processes to ensure feeing from the mixing
region is properly modeled. Coupling of both types of processes
requires modeling of microscopic properties of material as well as
macroscopic behavior of billions of particles in the mixing region.

In this paper, we demonstrate the coupling of DEM and
continuum models on a simple example. Mixing is done by a
paddle with dimension in the order of centimeters. Transport is
achieved by a moving roller surface through an opening under a
blade with a size of several microns. FEM and DEM models are
separated by an interface across which there is mass and charge
transfer between two models/regions. This approach is applicable
to mixing problems with several rollers.
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Figure 1. Geometry to be analyzed: Mixing Region with a Moving Roller
Surface

DEM Model

Physical properties of the toner in small scale such as particle
shape, size and surface properties are used for the DEM models.
Motion and charging of each particle is calculated individually.
Material properties are specified for each toner particle. As an
input to the model, shape and size distribution and individual
physical property of each component of toner are provided. The
forces acting on each particle are analyzed including the
interaction with the roller to determine their motion. Charging of
each particle and the electrical forces are also calculated [1].
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Figure 2. Models for calculating motion and charging of particles.

Material properties for particles required for the DEM model can
be measured although the shape and size varies from one particle
to another. The difficulty of DEM approach relates to the number
of particles. As the number of particles grows, computational cost
increase and it surpasses the existing capacity of computer
resource.  Although DEM can be used to simulate many
electrophotographic processes, for the mixing and feeding problem
presented in this paper, it is not practical to solely rely on DEM
approach
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Continuum Model

One can use continuum models without being concerned about the
size of the problem, large or small. The difficulty with the
continuum model is in defining material properties. The assembly
of particles is defined as a nonlinear material with properties such
as stress-rate of strain relationship, yield stress, etc. These
material properties for the continuum model are difficult to
measure directly. They can be determined by comparing the
results of the DEM model with the continuum model for simple
experiments. Microscopic material properties, such as elastic
properties, friction, etc., used in the DEM solution can be linked to
the macroscopic non-Newtonian properties of the continuum
model for the same simple experiment.

Figure 3. Simple Experiment: Particle Flow on a Slope- Comparison of DEM
and Continuum Models to Determine Material Properties of the Continuum
Model

Coupling of DEM and Continuum Models

In order to solve the described problem, we only consider number
of particles less than one million which are located in the
immediate neighborhood of the roller while billions of particles are
located in the region of interest. We then construct a continuum
model for the larger mixing area to analyze the mixing by the
continuum model. We then develop a DEM model for covering
the feeding area near a blade.

The steps of the analysis are as follows:

= Determine the microscopic physical properties of the
toner material. Determine macroscopic physical
properties by performing a simple experiment.

= Develop continuum and DEM models for both regions.

= Couple the two models and solve.

The parameters to be coupled are force/velocities and charges.
The basic variables in each model are:

=  DEM Model: Particle forces, velocities and charges
=  Continuum Model: Pressure, velocity and charge

distributions.

For the example problem, the continuum and DEM models are
defined as shown in the Figure 4.
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Figure 4. Continuum a DEM Models

The coupling between the two models involves distributed
variables such as pressure, velocity and charge in the continuum
model to be transferred to particle properties and received in
return.

Figure 5. Transfer of pressure distribution from the continuum model to the
forces on individual particles of the DEM model.

Figure 6. Transfer of velocity and charge of particles in the DEM model to the
velocity and charge distribution of the continuum model.

The coupling process can simply be described as follows:

=  Pressures are calculated from the continuum model and
transferred to particle loads, on the interface boundary.

=  Velocities are calculated from the DEM model and
transferred to the continuum model, Particle velocity is
applied as a boundary condition to continuum model
nodes on the DEM/FEM boundary.

=  Charges are transferred from one model to another
following the direction of velocities.
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Figure 7. Transfer of information between two models during the coupling
process

Although the solutions are marched in time simultaneously, the
time steps required for the stability of each solution is different.
Generally, the time step required for the DEM analysis is much
smaller. Solution of the continuum model and exchange of
boundary conditions between models occur after numerous time
stepping of the DEM solution.

Test Case

A sample problem was solved where the continuum model
included 28000 grid points and the DEM model had only 5000
particles at a given time. The time step size in the continuum
model was approximately 1.0e-05 second while the time step size
in the DEM model was around 3.35e-09. So, about 3000 time steps
in DEM model corresponded to one time step in continuum model.
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More detailed results will be presented at the conference.
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