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Abstract 
The variation of supplementary components, such as 

cartridges, has been observed to have an impact on the color 
electrophotographic (EP) process. The preliminary study shows 
that the cartridge variation affects the calibration sensor mapping 
which predicts colorimetric tone reproduction (CTR) values on 
printing media as a function of internal sensor readings from 
halftone patterns printed on the printer transfer belt. This paper 
presents the result of the data-driven study to identify the cartridge 
patterns and further improve the tone prediction accuracy in 
calibration of EP platform. First, the constrained hierarchical 
clustering method was applied to generate a variety of cartridge 
groups according to the characteristics on the sensor mapping. A 
new sensor mapping model including a cartridge clustering 
module was proposed not only to compensate for environmental 
and consumable conditions, but also to consider cartridge 
variation. The experimental results show that overall accuracy of 
the sensor mapping can be improved by ~ 40% on average after 
considering the cartridge factor. 

Introduction 
A color laser printer, i.e., a color electrophotographic (EP) 

printing system, is physically a binary process which produces all 
output colors by the combinations of certain primary colors such 
as cyan, magenta, yellow, and black (CMYK). To reproduce a 
primary color with a desired tone ranging from 0 to 255, the half-
toning process is proceeded to translate the desired continuous 
tone image into a half-toned image labeled with a half-toned 
density. Then, the appropriate amount of toner is laid down on the 
media by a particular pattern with the given half-tone density [1]. 
The colorimetric tone reproduction (CTR) measurement such as 
CIE L*a*b* is applied to represent colorimetric characterization of 
the EP printing output on media.  

Based on previous research [2-4], temperature, relative 
humidity (RH), cartridge toner consumption (CTC), organic 
photoconductive drum age, and developer bias voltages have been 
recognized as factors influencing color reproduction quality in 

terms of color consistency. Performing a calibration process 
periodically is a prevailing approach to maintain color consistency 
by restoring the printer control parameters to a desired state. To 
avoid the user involvement, the “off-media” calibration is 
performed. Basically, during a calibration, a number of color 
patches are printed on the transfer belt rather than output media 
and measured by on-board sensors to obtain “indirect” 
measurements, densitometer readings lS  ( l denotes the tone level). 
Based on these readings lS , a sensor mapping is constructed to 
determine how measured density lS  on calibration media relates 
to the actual printing density lCTR  on paper media. The sensor 
mapping result is then used in calibration algorithms to generate 
appropriate adjustments to EP control parameters 

Fig. 1 shows an example of an off-line-generated calibration 
sensor mapping which predicts CTR values on printing media by 
densitometer readings S measured on substitute media. Note that 
the CTR values are measured during off-line development from 
printed uncalibrated test pages and are not available when the 
calibration is performed online. The prediction model can be 
constructed by linear regression to predict CTR from S. The 
variation caused by RH and CTC disturbances can be considered 
in the prediction model to improve the tone prediction accuracy [2].  

However, as shown in Fig. 1, the distinguishable data clusters 
representing different cartridges show that the cartridge variation 
affects the sensor mapping accuracy. We can observe that the 
cartridge #2 cluster (square indicator) tends to shift to lower-left 
bound; while cartridge #1 (solid cicle) stays at the opposite 
location (top-right). The discrepancy among cartridge clusters in 
fact spreads out the sensor mapping variation and leads to high 
prediction error. 

This research attacked this cartridge issue and proposed a 
clustering analysis framework to study cartridge impact by 
analyzing the sensor and measurement data collected from off-the-
shelf color EP printers. Considering the variation caused by 
cartridge, a new sensor mapping model is developed for each 
cartridge cluster for improving the prediction accuracy during 
calibration.
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Figure 1. An example of sensor mapping between CTR values (ΔE76 values 
from paper white) measured from the printed halftone pattern on substitute 
media and the internal densitometer sensor readings S (magenta cartridges in 
this case) from halftone patterns printed on the printer transfer belt. Indicators 
denote different cartridges and parentheses show the number of data points. 
The variation of the data mapping among different cartridges can be clearly 
seen. 

Cartridge Clustering 
Clustering is one of unsupervised data mining tools. The goal 

of clustering is to partition the data points into groups (clusters) 
such that the instances in the same cluster have smaller pairwise 
dissimilarities than those in different clusters [5]. In general, there 
are two kinds of clustering algorithms: partitional and hierarchical 
algorithms. The partitional algorithm (such as K-means and its 
derived methods) simultaneously sections all data points to desired 
number of portions (clusters) based on similarity measures and the 
pre-determined number of clusters. On the other hand, the 
hierarchical algorithm recursively searches nested clusters 
according to the distance (or similarity) matrix which specifies the 
distance (or proximity) among data instances.  The hierarchical 
algorithm constructs a tree structure, called dendrogram, in either 
agglomerative or divisive mode. The agglomerative mode starts 
from an individual data point in its own cluster and merges the 
most similar pair of clusters to form an upper-level cluster; the 
divisive mode starts from all data points in one cluster and divides 
clusters into smaller clusters (lower-level) based on similarity 
measurement. 

In this research, the agglomerative hierarchical clustering 
algorithm was chosen to perform cartridge clustering because it 
does not use random initialization which may lead to different 
clustering result (note that K-means method assigns initial 
clustering centroid randomly). In addition, the dendrogram 
generated by hierarchical clustering can visually provide the 
proximity relationship among cartridges. Fig. 2 (a) shows an 
example of a dendrogram which indicates instance #3 are #5 are 
grouped first based on the shortest distance (2 in this case) 
between them, then the tree continues to merge instance #1 
(distance is 3) into the nested cluster, and so on. The horizontal 

dash line denotes three clusters can be determined if the distance 
level = 4 is chosen as a cutoff point. This proximity relationship 
can help on data exploration of cartridge analysis.  
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Figure 2. (a) An example of hierarchical clustering dendrogram; (b) an 
example of distance matrix with pre-partition block 

In this work, given a set of data D with n data instances 
denoted as 1{x , ..., x }n , Euclidean distance is used to calculate 
the distance between instances under a particular tone level l . 

2 2
, , , , , ,( , ) ( ) ( )i l j l i l j l i l j ld CTR CTR S S= − + −x x   (1) 

Where i and j denotes different data points. 
 
In order to guarantee the data points from the same cartridge 

are clustered together, the constrained version of hierarchical 
clustering method is used [6]. Essentially, the instance-level must-
link (ML) constraints are constructed to specify that two instances 
must be placed in the same cluster if they are from the same 
cartridge. All ML constraints constructed by cartridge partitions in 
fact create pre-partition blocks with the similarity (or distance) 
matrix; see Fig. 2 (b) as an example. Each sub-square-matrix in 
Fig. 3(b) represents a cartridge partition. Due to this partition, the 
constrained agglomerative hierarchical clustering algorithm, in fact, 
uses centroids of cartridge blocks to produce a set of nested 
clusters.  

Number of Clusters 
In order to determine the number of clusters, the principal 

component analysis (PCA) is applied to investigate the sensor 
mapping variation. PCA, essentially, is a linear orthogonal 
transformation which converts a set of correlated 

l lCTR S− variables into a set of values of linearly uncorrelated 
variables called principal components [7]. Fig. 3 shows an 
example of converting 5-cartridge dataset to two orthogonal 
principal components (PCs). The different hollow symbols 
indicate data points of 5 cartridges. The solid symbols denote the 
centroids of cartridge clusters. As seen in Fig. 3, the data points of 
cartridge #4 seem to be relatively far from other cartridges because 
all data points of cartridge #4 have negative projecting scores on 
the 2nd PC axis, while most of data points of other cartridges (#1, 
#2, #3, and #5) are on positive coordinate of the 2nd PC axis.  
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Figure 3. An example of 5-cartridge sensor mapping on two orthogonal 
principal component axes.  

By using PCA, we can evaluate the projecting scores on the 
2nd PC axis to determine the number of clusters which can 
contribute less overlapping of cartridge clusters on the 2nd PC axis. 
For each cluster, the 95% confidence interval (CI) of projecting 
scores on the 2nd PC axis can be constructed. In Fig. 4, each plot 
shows the mean (solid cycle) and the associated 95% CI of each 
cartridge group under different k. We can see when the number of 
clusters (k) increases from 2 to 5, the 95% CI among cartridge 
groups starts to overlap (when k = 5). In this case, k = 4 is the 
largest number of clusters before overlapping occurs. 

 
Figure 4. 95% CI of projecting scores of each cartridge cluster on the 2nd PC 
for different number of clusters (k). 

Experiment 
The dataset used in this study was collected from three 

midrange off-the-shelf EP printers, which were all the same model, 

between June 2005 and October 2006. These three printers were 
operated and managed by the same entity within Purdue 
University. The data collecting procedure consists of three 
processes: (1) performing calibration, (2) retrieving sensor 
information including lS  from the printer, and (3) printing the test 
page. The test page contains thirteen color patches with various 
tone levels ranging from 0 to 160 according to an 8 bits/pixel tone 
scale (256 colors) for each primary color. 2083 test pages were 
printed and graded to obtain lCTR  values. The corresponding 
sensor information such as lS , RH, CTC, and etc. were collected 
accordingly. Totally, the data with 18, 18, 16, and 18 cartridges 
were collected from three printers for CMYK, respectively. 

For each primary color, the agglomerative hierarchical 
clustering algorithm was performed on mid-range tone level to 
determine the cartridge group. For CMYK, 3, 4, 3, and 3 cartridge 
groups were designated, respectively. For each found cartridge 
group, a sensor mapping model is developed to predict CTR values. 
The existing method, the proposed model in [2] which considers 
RH, CTC, and tone-level factors, and the new cluster-based model 
are compared by their prediction accuracy. 

The root mean square error on cross validation (CVRMSE) 
defined as Eq. (2) is a conventional performance measure to 
compare the prediction models [8]. Essentially, the whole data set 
is divided by k folds. Each fold of data is selected randomly from 
the entire data pool without replacement. Then, the model training 
and validation are performed iteratively k times with different data 
sets. In each of the k iterations, one fold of the data is used as the 
validation set; and the rest of the data is the training set for 
developing the model. The RMSE of all predictions on each 
testing set is computed. In this article, 10-fold cross validation is 
used; 

 

( ) 2
, ,

1

1CVRMSE ( )
n

k x
l l i l i

i
CTR CTR

n =

′= −∑ , (2) 

where i=1,…,n; and n is the total number of data points. 
,l iCTR   is the measured CTR value on printing media under tone 

level l; ( )
,

k x
l iCTR′  is the predicted CTR value by k-fold cross 

validation, and k(i) indicates the sensor mapping function 
developed by the kth training set. 

Result 
Because the results of CMYK behave similarly, we used 

magenta cartridges as an example to present the results. All 18-
magenta-cartridge dataset are clustered into 4 groups based on the 
cartridge clustering result. The distinct sensor mapping model was 
developed for each cartridge group. Totally, 4 sensor mapping 
models for magenta were developed. Fig. 5 compares the 
CVRMSE of three models mentioned above. In order to compute 
the 95% confidence interval of CVRMSE, the bootstrapping 
technique was applied to generate 100 samples from the original 
dataset. The model training and testing were repeated 100 times on 
generated 100 samples. 

 

95% CI of Projecting Score on 2nd PC (Magenta) 

Cartridge #4 
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Figure 5. The sensor mapping performance computed by CVRMSE (ΔE76) 
on 18-magenta-cartrdige dataset. Each indicator shows the mean of 
CVRMSE for different models on a particular tone level. The associated 95% 
confidence intervals of mean CVRMSE are shown as horizontal lines. 

In Fig. 5, the black solid points show the CVRMSE of the 
existing method. They represent the worse case which the 
proposed method competes with. The triangle indicators represent 
the CVRMSE of the tone-dependent model with RH and CTC 
factors suggested in [2]. Furthermore, the square symbols indicate 
the CVRMSE of the proposed cartridge clustering model. Note 
that the proposed cartridge clustering model has considered tone-
dependent characteristics and RH and CTC factors because the 
distinct model for each cartridge group was generated by the 
method proposed in [2]. The cartridge clustering model 
outperforms other methods. It implies that the prediction accuracy 
of sensor mapping can be further improved by considering 
cartridge factor.  

Table I: Average root mean square error on cross validation 
(CVRMSE) comparison of sensor mapping models 

Model 
CVRMSE (ΔE76) 

Cyan Magenta Yellow Black mean 
# of Cartridge 

Group 
3 4 3 3  

Existing Method 1.98 2.31 2.82 3.20 2.58 

Tone-level-
dependent Model 
with RH and CTC 

factors 

1.02 
(48.30%) 

1.86 
(19.41%) 

2.22 
(21.19%) 

2.17 
(32.20%)

1.82 
(29.46%) 

Cartridge 
Clustering Model 

0.92 
(53.34%) 

1.36 
(41.18%) 

1.92 
(31.89%) 

1.87 
(41.34%)

1.52 
(41.10%) 

 
Table I shows the CVRMSE results of three different models 

for CMYK. The CVRMSE shown in the table is the average across 
all tone levels. The parentheses denote the percentage 

improvement of the proposed models against the existing method. 
It is noted the proposed cartridge clustering model can improve the 
accuracy by ~10% against the tone-level-dependent model with 
RH and CTC factors proposed in [2]. There is a reduction of mean 
ΔE76 from 1.82 to 1.52. The overall accuracy against the existing 
method can be improved by ~ 40% on average. This is a reduction 
of mean ΔE76 from 2.58 to 1.52. 

Conclusion 
In this research, the cartridge impact on prediction accuracy 

of sensor mapping in EP printer calibration was observed. An 
agglomerative hierarchical clustering algorithm was applied to 
perform a cartridge clustering. For each cartridge cluster, the 
distinct sensor mapping model was developed. The experimental 
results show that the proposed clustering model is able to 
significantly further improve the prediction accuracy of sensor 
mapping. 
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