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Abstract 

We evaluated the temperature-dependent rheological 
behaviors of several resin polymers in an environment-controlled 
chamber by monitoring the spreading dynamics of polymer melts 
on various substrates to understand their interfacial interactions at 
different processing temperatures upon contact with materials of 
interest.  To the best of our knowledge, this is the first report on 
the study of polymer-pigment interaction via contact angle 
measurement of toner resins on substrates constructed from 
pigment nanoparticles. 

Introduction 
Identifying materials with the optimal compatibility is an 

important prerequisite to many developmental practices that 
involve the assembly of different counterparts.  For example, 
failure to identify the appropriate colorants and additives in ink 
development can lead to unstable formulations which often lead to 
poor image quality and poor print attributes.  One of the 
approaches to assess materials compatibility is through 
determining their surface energies via contact angle measurements.   

The extrapolation of contact angles of reference liquids 
interfacing with the materials of interest can be modeled based on 
theories proposed by Young, Zisman, Fowkes, Wu, Owen-Wendt-
Rabel-Kaelble, and Schultz to determine the surface free energies 
[1]. Although theoretical models can provide quantitative 
predictions of the nature of a particular surface, they determine 
surface energies based on the materials interfacial energies with 
the test liquids and on the assumption that materials of interest are 
unique in nature.  For example, the Schultz model is particularly 
suitable for high-energy solid surfaces; while Wu, Fowkes and 
Owen-Wendt-Rabel-Kaelble models are more suitable for 
materials which exhibit both dispersive and polar characteristics.   
Although these models are useful in providing information 
regarding the surface energy of materials, they cannot provide any 
direct indication of the surface interactions between two materials 
having temperature-dependent properties. 

Motivation 
Polymeric materials such as toner resins and engineering 

plastics have temperature-dependent rheological behaviors.  These 
physical properties are intrinsic to the performance of the printing 
ink, giving them important properties such as fusing, film 
formation, adhesion, cohesion, particle size and morphologies.  
They are typically subjected to thermal treatment during 
processing such as extrusion, milling and injection molding in 
which polymers are softened or melted.  In these conditions, the 

surface energy and the wetting behavior of polymers could vary 
significantly with temperature, but these changes are difficult to 
assess using contact angle measurements with standard test liquids 
because the operational temperatures at which these polymers are 
handled often exceed the boiling point of the standard test liquids.  
To the best of our knowledge, the surface tension of various 
polymer melts such as PP, HDPE, PS, PMMA and star polymers 
have been explored on molded substrates [2], but the polymer melt 
behaviors on discrete materials such as pigment have not been 
reported.   

Organic pigments are typically composed of one type organic 
chromophore and are often poly-crystalline.  In the manufacturing 
process, they are synthesized and grinded to different sizes to 
maximum light scattering to give them the most vibrant color 
efficiency for each specific application.  Like other organic 
molecules that can be recrystallized, they can be compacted under 
pressure to form a large poly-crystal, similar to the preparation of 
salt plates for IR absorption measurements.  Here we report a 
macroscopic analysis of polymeric hot melt wetting on discrete 
material surfaces such as organic pigments. We demonstrate the 
feasibility of assessing the wetting behavior of polymer melts on 
pigment discs that are produced under high pressure to form a 
macroscopic reconstruction of pigment surface under controlled-
temperature environment.  The ability of reconstructing a substrate 
representative of the pigment surface without roughness is critical 
to an accurate assessment of the pigment’s surface energy [3].  Our 
approach provides a direct comparison of the wetting behaviors of 
polymeric materials such as thermoplastics on different types of 
pigment surfaces.   

Approach 
Based on the assumption that the constructed surface with 

pigment particles is representative of the surface of each discrete 
particle, we are survey the average surface energy of these 
surfaces in a macroscopic scale.  To assess the properties of these 
constructed surfaces, we utilized a die which is typical for the 
making of crystal discs for IR absorption measurements.  Under 
approximately 10 tons of pressure, most materials can be 
compressed to form a bulk sample.  Depending on the materials 
utilized, the interfacial energy holding them together could arise 
from Van der Waals, electrostatic, ionic and hydrogen bonding.  
These are common in polymeric and organic materials, such as 
those containing hydrocarbon chains, charged atoms, or materials 
containing both hydrogen acceptor and donor.   
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Experimental 
 

 

 
Figure 1. From left to right, we have one of the two plastic lined anvils, next to 
it is the die we used to prepare our pigment disc.  Approximately 100 – 200 
mg of sample is typically loaded into the die then smoothed and compressed 
under 10 ton pressure to form a pigment disc on the lower right. 

To construct a sufficiently large sample surface from discrete 
materials such as organic pigment, we utilized a die which is a 
common sample preparation tool for creating salt discs used in IR 
absorption measurements.  In a typical setup, 100 – 200 mg of 
pigment powder is deposited into the cavity of the die, smoothed 
between two plastic-lined anvils, and compressed under 10 tons of 
pressure for 10 – 15 minutes at room temperature.  Upon release of 
pressure, a solid pigment disc measuring 1 cm in diameter and 1 
mm in thickness is formed.  It requires some practices to obtain a 
well constructed disc, and the choice of plastic liner has a big 
effect on the release of the materials because some plastics yield 
under pressure, causing failure of the pigment disc to be released 
after its formation. 

We examined four representative samples of off-the-shelf 
pigments from the four major colors, cyan, magenta, yellow and 
black.  Interestingly, we were unable to compress black pigment 
into pigment disc, regardless of how much pressure and 
preparation time was used.  Among the four pigments, only black 
is an amorphous material.  This explains the failure of crystal 
formation under pressure which is the major mechanism holding 
the materials together.  While cyan, magenta and yellow were 
organic materials made of one small molecule as a chromophore, 
they could be compressed into poly-crystals.  The crystal 
formation was particularly pronounced with cyan, which showed a 
slight shift in color due to close packing of the nanostructures 
which is known in optically active materials as bathochromic or 
hypsochromic shift due to the new orientation of the relative 
molecular orientation  

 
Figure 2.  (Left) Contact angle measurement device Kruss DSA100 equipped 
with a high temperature dosing system for dispensing high viscosity materials 
and the environmental chamber (right).  

in space.[4,5] 
The equipment we used to carry out the measurements are 

shown in Figure 3 & 4.  It is a high precision contact angle 
measuring device by Kruss equipped with a high temperature 
dosing system and an environmental chamber which allows 
control over both temperature and the type of atmosphere in which 
the experiment can be conducted.  With the capability of video 
recording evolution of events that happen during the experiments, 
we examined the melting behaviors of some commercially 
available toner resin on both reference substrates and the pigment 
samples discs prepared in-house.  The reference materials chosen 
are Teflon and glass.  These two materials represent two distinct 
types of surface energies, with Teflon being completely 
hydrophobic due to the halogen and hydrocarbon chains, while 
glass is hydrophilic with oxygen atoms on the materials surface 
available for hydrogen bonding.   

 

 
Figure 3.  The chronological changes and dosing behavior of a low molecular 
weight polymer while being dispensed inside the environment-controlled 
sample chamber.  

Figure 3 shows the evolution of a low melting polymer and its 
behavior upon dosing onto glass with respect to time.   In a typical 
experiment, the experimental chamber is equilibrated to the 
melting temperature of the material being examined.  A drop of the 
melted resin polymer was then dispensed in 10 uL increments until 
a sessile drop is formed and can be deposited onto the testing 
substrate. 

Results & Discussion 
 

 
Figure 4.  The direct comparison of two polymers having almost identical 
melting point exhibit different rheological behaviors while dosing at different 
temperatures due to viscosity difference. 

The behavior of one toner resin can have different behaviors 
on different substrates, which directly indicates the compatibility 
of the resin with the substrate we are interested in at a specific 
temperature.  It is particularly useful to examine the rheological 
behaviors of materials at the actual process temperature because it 
may be under or above the transition temperatures of the materials 
and we can gain insight to how to control the process.    
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We examined several polymers that have similar melting 
temperatures but different viscosities and their behaviors on the 
pigment discs at or near the polymer’s melting temperature.  The 
dosing behaviors of different polymers even having the same 
melting temperature are different due to viscosity.  As shown in 
Figure 4, a low molecular weight (LM) sample and a higher 
viscosity sample (V) having almost identical melting point have 
completely different behaviors.  At 105 °C, which is above its 
melting temperature, the dosing of V was still not complete, while 
LM dosing was completed in 107 seconds. 

 

 
Figure 5.  Plots of contact angles changes of the viscous polymer (V) at 80°C 
over the course of 2 hours.   

When we observe the spreading behavior of V at 80 °C as 
shown in Figure 5, the changing in contact angle seized after 1 
hour and it clearly shows that this resin has a higher affinity for the 
yellow pigment since its contact angle is almost 10 °C smaller than 
magenta and 5 °C smaller than cyan.  From this experiment we can 
conclude that this particular polymer is likely to coat the yellow 
pigment better than cyan or magenta. 
 

 
Figure 6.  Plots of contact angles changes of the low molecular weight (LM) 
polymer at 80°C over the course of 3 hours.   

 
Figure 7.  Plots of contact angles changes of the viscous polymer at 80°C 
over the course of 2 hours.   

When we examine the low molecular weight (LM) polymer 
on the same pigment surfaces (Figure 6), we observed a similar 
trend that the resin once again exhibit better wetting on the yellow 
pigment compared to cyan and magenta.  The discrepancy is once 
again 10 °C, however, in this experiment, cyan and magenta 
appear to have more similar surface energies relative to the LM 
polymer. 
 

To compare the performance the same materials on different 
materials in perspective, a different polymer having a higher 
melting point and viscosity was dosed on all three pigments and 
the references, namely glass and Teflon.  As shown in Figure 7, we 
can see that due to the high surface energy of glass, this polymer 
can wet the glass surface better than it does with low surface 
energy Teflon.  Toward the end of the 12-hour experiment when 
the contact angles of the samples had seized to change, it appears 
that the pigment surface of cyan and magenta have very low 
surface energy and the curves coincide with Teflon.  As we have 
seen with prior samples, yellow once again appear to have a higher 
surface energy compared to cyan and magenta.  A likely 
explanation is due to available atoms in the yellow chromophore 
for hydrogen bonding. 

Conclusion 
We reported a method to systematically examine the 

temperature-dependent behaviors of materials such as resin 
polymers with substrates constructed from discrete materials such 
as organic pigments.  Using high and low surface energies 
substrates as standard for reference, we can indirectly infer 
potential mechanisms that the wetting behaviors may have arise 
from.  It is possible to extend this investigation method to explore 
other materials systems involving fine particles to assess the 
compatibility of various parts that may not be able to otherwise. 
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