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Abstract

High resolution latent image formation is an important step
in electrophotography to achieve high quality prints. Presently,
analytical models exist for the other important steps: photocon-
ductor charging, development (both single and dual component),
and transfer. We present here an analytical model of charge im-
age generation on the surface of an organic photoconductor due
to laser exposure. The inputs to the model include laser inten-
sity profile as a function of time, quantum efficiency of the charge
generation layer, hole mobility of the charge transport layer, and
initial charge density on the surface of the PC. The output of the
model is the PC surface charge map as it evolves in time, which
is a key input to the toner development process in electrophotog-
raphy.

Introduction

Analytical modeling of engineering systems provides advan-
tages of rapid conceptual iteration, low cost concept evaluation,
and detailed physical understanding. Analytical models exists for
other critical steps important to achieve high resolution image for-
mation in electrophotography, such as charging, development, and
transfer. Here, an analytical model for charge image formation on
a photoconductor (PC) surface due to laser exposure is presented.

Mathematical Model

The charge transport model implemented here is an analyti-
cal model updated with finite difference approximations in time.
The charge and field solutions are continuous solutions obeying
Maxwell’s equations [3]. A diagram of the mathematical model
is shown in Figure 1.

Charge Continuity
Continuity equations for energy, momentum, and charge re-
sult directly from Maxwell’s equations. Of interest here, is the

charge conservation condition which describes the transport of
holes in the PC [1]

dp(F.t)
ot
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where 7 = xX + yy + zZ is the position vector, p is the hole charge
density, J is the free hole current density, u is the hole mobility,
and E is the local electric field. It is assumed that disassociated
electrons are drained to the PC core. Applying the chain rule of
differentiation yields

dp(Ft)
ot

=—up(F,t)V-E(F,t) — uE(F,t)-Vp(F,1).  (2)

NIP 28 and Digital Fabrication 2012

Taking a finite-difference approximation to the time derivative
yields the an update equation at each time step,

Ap = —Atp [p(F,t)V-E(F,t) + E(7,1)Vp(F,1)]. 3)

Charge Expansion
The volume charge at each time step is expanded in a three-
dimensional (3-D) Fourier series
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and the constants 0y, are determined in the first time step by
mode matching with the input charge. At each subsequent time
step the Fourier coefficients are updated from the charge update
equation.

The PC surface charge is likewise expanded in a two-
dimensional (2-D) Fourier series
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Figure 1. Diagram showing the mathematical model in the z — p plane and
the x—y plane. The CGL layer extends from 0 < z < d, the CTL layer extends
from d < z < h, and air occupies the region z > h. For simplicity, the CTL and
CGL have the same dielectric permittivity € and hole mobility p. In the x —y
plane, the domain is repeated with a period of 2a in the x-direction and a
period of 2b in the y-direction due to the Fourier expansion.
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where the constants f3,,, are determined in the first time step by
mode matching with the input surface charge. At each subsequent
time step, the surface charge Fourier coefficients are updated from
the charge update equation applied at the z = & boundary.

Field Solution

The fields in each region satisfy the Maxwell equations. The
electric potential in Region I (0 < z < h) is determined from the
Poisson equation, and the potential in Region II (z > h) is deter-
mined from the Laplace equation. The potentials are
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where BEJZ, BEnZZ, and K are determined from the boundary con-

ditions. The Poisson equation requires that
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and
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The electric field is defined as E(7,1) = —VP(7,t). In Re-
gion I the electric field is
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and in Region II the electric field is
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Boundary Conditions

The field solutions have been chosen carefully so that the
potential at the PC core is zero (i.e. Veore = p() (z=0) =0) for
simplicity. One could offset the entire solution by a constant value
without changing the results of the simulation. The remaining
boundary conditions are

P (ryh) =¥ () =0 (122)
EX ()~ eE () = pi/eo. (120)
(2)

For the m = 0,n = 0 terms, this yields the values for K; and By
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Note that B(%) does not contribute to the model and is not consid-
ered an unknown of interest. For all other values of m and n, the
unknowns are solved algebraically as a 2 x 2 system
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Discussion

For illustration, a 1-D simulation was run to demonstrate
charge spreading in the z-direction. Figure 2 shows a distribution
of charge contained in the CGL layer at t = 0 and at t = 30 us.
The figure shows that the charge has moved toward the surface of
the PC and spread along the z-axis as the holes migrate toward the
surface.

Three dimensional (3-D) simulations take some computa-
tional effort. However, typical laser spots can be modeled in the
x —y plane with a small number of modes. Figure 3 shows one
quadrant of a typical laser profile with up to M = N = 5 Fourier
expansion representations of the 2-D profile. The coefficients
Opmpp of the modes are determined by mode matching with the
input laser profile mapped to a volume charge density using the
smooth z profile in the CGL shown in Figure 2 and the experi-
mentally determined quantum efficiency.
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Figure 3. Mapping of a typical laser profile (a) in one quadrant to Fourier
mappings with b)) M =N =1, (¢c) M=N=2, (dM=N=3, () M =N =4,
and (f) M =N =5 modes in x and y. P =40 in each case and the z profile is
shown in Figure 2 att = 0.
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