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Abstract 

Design for Lean Six Sigma (DfLSS) is a systematic 
methodology to design new products or processes so that quality is 
built into every phase of product design. It is also a proven process 
improvement methodology used for improving existing products 
through redesign, and currently widely being employed across 
chemical industry. This paper describes the application of DfLSS 
methodology for the formulation and process design of an 
improved emulsion latex for emulsion-aggregation toner 
application. A systematic IDOV process (Identification, Design, 
Optimization and Validation) was demonstrated from the point of 
view of the research scientist/engineer. The key customer 
requirements were “designed-in” via the latex key properties (Tg, 
Mw and particle size) and optimized through DOEs (design of 
experiment). The resulting latex process is more robust against 
several sources of variation (raw material quality, operation and 
equipment aging). This was accomplished through a robust design 
and implemented at the manufacturing scale. 

Introduction 
Design for Lean Six Sigma (DfLSS) is a systematic 

methodology using tools, training, and measurements to enable the 
design of products, services, and processes that meet customer 
expectations at Six Sigma quality levels. Typically, Design for Six 
Sigma follows IDOV four-phase process that consists of Identify, 
Design, Optimize and Verify, as shown in Figure1. Different tools 
can be used at each phases [1] .  

 
 

 
Figure 1. Design for lean six sigma (DfLSS) IDOV process.   

The Identify phase begins the process with a formal tie of 
design to Voice of the Customer. This phase involves developing a 
team and team charter, gathering VOC, performing competitive 
analysis, and developing CTQs. The Design phase emphasizes 
CTQs and consists of identifying functional requirements, 
developing alternative concepts, evaluating alternatives and 
selecting a best-fit concept, deploying CTQs and predicting sigma 
capability. The Optimize phase requires use of process capability 
information and a statistical approach to tolerancing. Developing 
detailed design elements, predicting performance, and optimizing 
design, take place within this phase. The Validate phase consists of 
testing and validating the design. As increased testing using formal 
tools occurs, feedback of requirements should be shared with 
manufacturing and sourcing, and future manufacturing and design 
improvements should be noted. Figure 2 summarized the 
comparison between Six Sigma and Design for Six Sigma [1]. 

 
Why DfLSS
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Figure 2. Why Design for lean six sigma (DfLSS).   

Chemically produced toners (CPT) have attracted more and 
more attention both in academic studies and industrial application 
for digital printing. Depending on the chemical process used for 
the preparation of toner, CPT can be made through suspension or 
dispersion polymerization, emulsion aggregation, and chemically 
milling process [2-4]. Compared with conventional toner process 
(mechanical grinding process), CPT approaches to toner offers 
advantages such as smaller toner particle size and narrower size 
distribution, higher toner transfer efficiency in the machine and 
better image quality [5]. Among all the CPT processes, emulsion 
aggregation (EA) process offers more tunability on particle design, 
especially on particle composition, structure, and morphology and 
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shape factor. EA process consists of aggregating polymeric 
particles prepared by emulsion polymerization (latex) with 
pigment and other toner components. Typically, in EA process, the 
toner particles are produced directly from submicron polymer 
particles dispersions, by mixing latex prepared by emulsion 
polymerization with pigments and other ingredients (also dispersed 
in aqueous phase)[5, 6]. All the latex and pigments dispersion are 
negatively charged. Then a flocculated agent was added into the 
mixture (typically positively charged) and aggregate particles 
ranged from 0.8 to 2 micron can be formed through the 
aggregation of latex and pigment particles. This is referred as 
primary aggregation. The primary aggregates can the further grow 
to the 5 to 10 micron in diameter through secondary aggregation 
under carefully controlled operating conditions. Finally, those 
aggregates went through a coalescence step under which the 
particles are fused into homogeneous toner particles of controlled 
shape by heating above the glass transition temperature. Toner 
particle shape and size distribution are important factors in 
determining the electrophotographic printing machines 
performance and the final print image quality, especially for 
advanced high-resolution and color printings. 

The latex quality (particle size, size distribution, molecular 
weight and weight distribution) is very important for EA toner [7, 
8]. A robust latex making process is often critical to produce high 
quality of latexes with very tight specification as required by EA 
toner process.   

Experimental 
Semi-Continuous Emulsion Polymerization: In a 300L 

jacketed stainless steel reactor, a certain amount of anionic 
surfactant, and deionized water were charged in, and deaerated for 
30 minutes while the temperature was raised to 75°C. A monomer 
emulsion was prepared by agitating a monomer mixture of certain 
amount of styrene, n-butyl acrylate, the functional monomer 
acryloxypropionic acid with an aqueous solution (certain amount 
of anionic surfactant and deionized water) at room temperature. 
All the chemicals were from Sigma-Aldrich. 1 wt% of the pre-
made emulsion was taken as the seed emulsion and added into the 
reactor and was stirred for 10 minutes at 75°C. An initiator 
solution prepared from certain amount of ammonium persulfate in 
deionized water was fed into the reactor over 20 min. Stirring 
continued for an additional 20 minutes to allow seed particle 
formation. The remaining monomer emulsion was fed into the 
reactor at a control rate over 4 hours. At the conclusion of the 
monomer feed, the emulsion was post-heated at 75°C for 3 hours 
and then cooled. The final latexes were characterized for particle 
size (MicroTrac). 

EA toner particle preparation: All the toner particles in this 
paper were prepared in a 2L glass reactor using the following 
process. In a 2L beaker, 258 grams styrene-butyl acrylate latex 
(particle size of 220 nm), 80.0 grams pigment dispersion (magenta, 
or black), and de-ionized water 670 grams were mixed by a 
homogenizer for 15 minutes at 20 ºC. Then a flocculate agent was 
added dropwise in 5 minutes. The resulted viscous mixture was 
continuously mixed by a homogenizer for another 20 minutes to 
form primary aggregates with particle size of about 2.0 micron. 
Then the homogenizer was removed and the mixture was transfer 

into a 2L glass reactor. And the temperature of the mixture was 
raised to 50ºC in about 35 minutes under a mechanical stirrer 
mixing at 550 rpm. After the particles reach at 5.8 micron, 140 
grams shell latexes (the same as the core latex) were added 
dropwise in 10 minutes. After particle size reached at 6.5 microns, 
a freeze agent was added to stop the particle growth and hold for 
another 20 minutes. Then, the temperature of the mixture was 
raised to 90 to 96 ºC in 35 minutes and hold for certain time. The 
mixture was cooled down to 35. After washing de-ionized water, 
acid and DI-water, and dried at 45ºC, the final toner product has a 
volume median particle size of 6.0 microns. 

Robust Design for EA Latex 
IDOV process in EA latex robust design: A systematic IDOV 

process (Identification, Design, Optimization and Validation) was 
followed.  Figure 3 outlines the Identify Stage deliverables. After 
this stage, the key customer requirements were identified through 
voice of customer (VOC).    

 
Identify Stage: Customer Requirements

Toner Performance
oToner thermal properties
oToner flow and anti-

blocking
oCharge control 
o Image gloss 

Latex Resin Properties
o Latex resin > 80% of the toner 
o Resin polymer composition
o Resin rheology (G’, G”)
o Gloss transition temp. (Tg)
o Molecular weight (Mw, Mn)
o Molecular weight distribution

Toner Making Process
oAggregation
oSlurry viscosity
oSize & Shape rate control
oSize & shape distribution
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Latex Dispersion Properties
o Latex pH
o Latex particle size 
o Latex size distribution
o Surface functional group
o Surface charge density
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Figure 3. Identify Stage: Customer Requirments 

The identified Critical to Customer (CTC) requirements were 
transferred into Critical to Quality design parameters through 
House of Quality exercise. An example is shown in Figure 4. 
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The identified key customer requirements were then “designed-in” 
via the latex key properties (Tg, Mw and particle size) and 
followed by optimization through DOEs (design of experiment) 
and verification.  Figure 5 shows an example of a DOE to screen 
the key factors on controlling the above key properties during 
Design Stage. 

 
Design Stage: Formulation & Process

Taguchi L12 DOE, to screen 8 factors 
Input: CTQ (critical formulation & process parameters) 
Output: CTC (Primary latex properties)

Factor A B C D E F G H

Row 
#

β CEA

D
D

T

St-nBA

Surfactant

Tem
perature

Initiator

Feed rate

H
olding Tim

e

1 -1 -1 -1 -1 -1 -1 -1 -1
2 -1 -1 -1 -1 -1 1 1 1
3 -1 -1 1 1 1 -1 -1 -1
4 -1 1 -1 1 1 -1 1 1
5 -1 1 1 -1 1 1 -1 1
6 -1 1 1 1 -1 1 1 -1
7 1 -1 1 1 -1 -1 1 1
8 1 -1 1 -1 1 1 1 -1
9 1 -1 -1 1 1 1 -1 1

10 1 1 1 -1 -1 -1 -1 1
11 1 1 -1 1 -1 1 -1 -1
12 1 1 -1 -1 1 -1 1 -1
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Figure 5. Design Stage: Screening DOE  

Conclusions 
Emulsion polymerization is a segregated free radical 

polymerization. Both formulation & process play critical role on 
final product properties. Design for Lean Six Sigma (DfLSS) is a 
systematic methodology to design new product or process. By 
using a disciplined set of tools, a specialty latex product was 
optimized for emulsion aggregation toner applications following 
IDOV process. 
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