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Abstract 

For parameter design of xerographic process with simulation, 
suitable simulation models have to be established. Thermal control 
design of a complex fusing system requires a simulation tool not 
only with high accuracy but also with high speed. The simulation 
model developed in this study utilizes hybrid calculation technique 
of one and two dimensional heat transfer model and is capable of 
high speed calculation without losing accuracy. In this model, heat 
transfer efficiencies between components are defined and 
determined by one dimensional numerical analysis in prior. The 
simulation tool for belt roll fuser installed in Fuji Xerox Color 
1000/800 Press was developed and applied to parameter design.  
As a result of the application, time required for the development 
was largely reduced. 

Introduction  
A fuser system fixes toner onto paper with heat and pressure 

in the xerographic process.  Thermal control design of the fuser 
system is one of the most important matters for its development   
because too much or too small heat supply results in image defects, 
and non-uniformity of heat supply causes reduction in productivity.  
Therefore, uniformity of heat supply and temperature at nip region 
is an important subject to achieve high quality image and high 
speed printing. To achieve the uniformity in a limited development 
period, an accurate prediction of the relationship between control 
parameters and temperature in the nip region with a numerical 
simulation is effective for the parameter design of thermal control. 

In order to determine parameters with a numerical simulation, 
a model which reproduces the heat transfer phenomenon of the 
whole fuser system has to be established.  In addition, the model 
has to be able to produce the results with high-speed because 
parameters for the sequence control are evaluated by tracing the 
variation of temperature for long duration.  Three dimensional 
models are desirable for accuracy but are time consuming in 
general.  The efficient thermal network models [1] may be applied 
but they cannot produce important temperature distributions in 
each part.  In this paper, a modeling technique for thermal 
parameter design is described.  In the present model, the function 
expressing heat exchange between components in contact is 
defined with the heat transfer coefficients.  The heat transfer 
coefficients are determined by one dimensional analysis in 
advance. Components of the fuser system are modeled by one or 
two dimensional models.  With this technique, the model for belt 
roll fuser in Fuji Xerox Color 1000/800 press was built and applied 
to its parameter design. 

Heat transfer phenomenon in a system 
The heat transfer phenomenon around the nip region of a 

fuser system with a fuser belt is schematically shown in Fig 1.  

The heat generation from a fuser lamp in a heat roller Qg, the heat 
storage in the system Qs , and the heat dissipation to the 
surroundings Qout, have a relationship expressed as the following 
equation: 

Qg = Qs + Qout (1) 
 
In this paper, a symbol Q with a subscript represents heat per 

unit time and has the unit watt.  The heat conduction in a system is 
expressed by the unsteady heat equation [2] [3]. 
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where Cv is  the heat capacity, T is the temperature, qv is the heat 
generation, v is the velocity, and λ is the heat conductivity of the 
target object. 
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Figure 1 Heat transfer phenomenon around nip region 

Heat transfer model of contact region  
In the thermal control design, temperature of the fuser belt 

before the nip is the most important.    Therefore, the relationship 
between the temperature before the nip and exchanged heat in the 
contact region is analyzed.  A cross-section of a fuser belt and a 
roller rotating in the same velocity is shown in Fig.2.    As shown 
in the figure, time before the contact t0, just after the contact t1, 
just before the detachment t2, and just after the detachment t3 are 
defined.  The temperature distribution in the thickness direction of 
the belt and the roller is calculated with a one dimensional heat 
conduction analysis under the assumption that each part has a 
uniform temperature distribution at the time t0 before contact.    
The temperature distribution along thickness direction during the 
contact from t1 to t2 is shown in Fig3 (a), and that after the contact 
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from t2 to t3 is shown in Fig3 (b).  These results show that, even 
though temperature gradient arises in the nip, the temperature 
becomes uniform again swiftly after the separation.    Therefore, 
heat exchange between components can be characterized by the 
temperature before contact and that after the contact. 
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Figure 2 Cross-section of contact region  
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Figure 3 Temperature distribution of thickness direction  

By similar analyses as the one described above with at 
different temperatures of the roller and the fuser belt, the 
relationship between the temperature difference before contact ΔT 
and transferred heat Qtr is obtained as shown in Fig4.  From the 
result, the transferred heat Qtr is found to be almost linear with ΔT, 
and the slope of the line is defined as the heat transfer coefficient β.   

TQtr Δ⋅= β  (3)       (3) 

 
As the type of materials, the size of contact area, and the linear 
velocity are given, the coefficient β for each contact region is 
obtained by a thickness-wise one dimensional heat conduction 
simulation. 
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Figure 4 Heat transfer model in contact region  

Fuser system model 
A model of the overall system consists of one dimensional 

roller models, a two dimensional fuser belt model and the heat 
transfer model at the contact regions between them.  In addition, 
the present model considers the heat dissipation at the surface 
boundary to the surroundings, and the heat transferred axially to 
the supporting components such as bearings. The heat dissipation 
Qout and temperature of the surface and the surroundings has a 
relation as the following: 

Qout. = Qe + Qair = α(T ext – T surf), (4) 
 

where α  is the heat transfer coefficient at the surface, Tsurf is 
temperature of the surface of the components, and Text is that of the 
surroundings.  Qe is the heat which moves from the roller to the 
bearings at the both ends.  Qair is the heat which is released from 
the device surface to the air.  The coefficient α is defined for each 
part and determined experimentally.  An example model of the 
whole fuser system is shown as Fig.5.  A roller is expressed as one 
dimensional model in the axial direction.  TRA represents the roller 
temperature just before contact with the fuser belt (point A), and 
TRB represents that after contact (point B).  The roller is divided 
into cells in an axial direction and the temperature distribution is 
obtained by solving discredited heat equation in every cell.  The 
heat equation of point A is the following. 

 

outcs
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td
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CV ++=  , (5) 

where Qs is the heat generation from a lamp, Qc is the heat 
conduction in a roller, and VR is the volume of a calculation cell, 
CvR is  the heat capacity of the roll.  The heat generation from the 
lamp Qs is calculated considering the heat capacity of its own.  A 
heat equation of point B is the following. 

tr
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−  , (6) 

( )RABAtr TTTQ −=Δ⋅= ββ  , (7) 

 
where Qtr is the heat transfer in contact area with a fuser belt, and 
VR is the volume of the calculation cells, TBA is the temperature of 
the belt just before contact. 

The fuser belt is divided into cells in an axial and 
transportation direction.  The two dimensional temperature 
distributions are obtained by solving the equation in the each cell. 
The relationship between the temperature of the belt before the 
contact TBA and that after contact TBB is expressed as, 

  

)( RABAtr
BABB
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td
TT

CV −−=−=
−

β      (8) 

 
where VB is the volume of the calculation cells, CvB is  the heat 
capacity of the fuser belt.  In other cells (cells for non-contact 
region), the following equation is solved, 
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where Qc is the internal heat conduction.  The heat transportation 
by the motion of the fuser belt is represented by moving cells to 
the rotation direction at every calculation steps. 
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Figure5 Heat transfer model of fuser system 

Application to parameter design 
The simulation tool which was established with this modeling 

technique was applied to the design of thermal control parameters 
of BRF (Fig.6).  BRF which stands for a “belt roll fuser” is a 
newly developed fusing technology [4].  The BRF technology 
realized high-speed and high-quality printing for a wide variety of 
paper, by maintaining the belt temperature with three rollers each 
having multiple heaters.  Because of the complex configuration, 
the number of parameters for lamps and control sequences 
outnumbers that of conventional fuser system.  Therefore the 
simulation tool utilizing the present model for the thermal control 
design of BRF was constructed to reduce the development period.  

As one of the thermal control design, parameters for the 
warm-up mode were determined by the simulation tool.  The 
warm-up-time is one of the most important matters, because it 
could affect the start-up time and the image quality of the first 
print.  In the early phase of the development of BRF, the 
temperature uniformity after the end of warm-up mode did not 
meet the target level.  Therefore, optimization of control 
parameters and lamps by the developed model are put into practice. 
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Figure 6 Belt roll fuser in colo1000/800 press 
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Figure 7 Simulation result and measured temperature of warm-up time 

The temperature distribution predicted with the simulation 
tool is compared with the experimental data.  The predicted 
temperature distribution of the fuser belt in the warm-up period is 
shown in Fig.7 (a). The comparison between the measured 
temperature and the calculated one is drawn in Fig7 (b).  Symbols 
are the measured data, and lines represent simulated results.  The 
difference between the measured data and the simulation results is 
less than 5°C.  The accuracy of the tool was confirmed to be 
enough for the application to the parameters design. 

Parameters were determined step by step.  At the first step, an 
allocation of electric power for three rollers was determined.  At 
the next step, distributions of lamps for warm-up period were 
optimized.  At the last step, control sequences for three heat rollers 
were evaluated.  As an example, the results of calculations at the 
last step are shown in Fig.8.  In the figure, the temperature 
difference representing the non-uniformity is plotted versus several 
control sequence sets indicated by parenthesized numbers.   From 
these results, the best combination of control sequences for 
temperature uniformity of the fuser belt was selected.  With the 
present results, the uniformity of the temperature of the fuser belt 
satisfied the target level.  To get the above results, about 100 times 
calculations for warm-up period were required. It took only1.5 day 
for these studies with simulation.   These parameters were adopted 
in products, and the temperature uniformity met the target level as 
shown in Fig9. 
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Figure8 Results of parameter study for control sequences  
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Figure9 Improvement of temperature uniformity of fuser belt at the end of 
warm-up period 

Conclusions 
Thermal control design is one of the most important matters 

for developing a fuser system. The improvement of temperature 
uniformity at nip region is principal subject to achieve high quality 
image and high speed printing. In order to determine parameters 
with a numerical simulation, a model which reproduces the heat 
transfer phenomenon of the whole fuser system with high-speed 
was established. In the present model, the function for heat transfer 
between components in contact is defined as the heat transfer 
coefficients. Coefficients for the heat transfer are determined by 
one dimensional analysis in advance. Each components of the 
fuser system are modeled by one or two dimensional models.  

With this technique, the model for a belt roll fuser in Fuji Xerox 
Color 1000/800 press was built and applied to its parameter design. 
The lamps and control sequences were optimized by the 
application of the present tool, and the time required for the 
development was largely reduced. 
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