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Abstract 

The majority of today’s electro-photographic toners 
incorporate an external additive(s) to fine tune their desired 
performance attributes. One of the key additives found to be 
effective at influencing powder flow, charging behavior, and 
charge stability of conventionally milled or chemically produced 
toners is fumed silica and more so if the silica has been rendered 
hydrophobic. 

Fumed silica is produced via a pyrogenic process and results 
in primary particles coalescing, fusing and sintering to form 
particles with an aggregated structure. This secondary particle 
has a size ranging from approximately 100 – 200 nm depending on 
the process conditions for the specific silica grade. These 
aggregates form hydrogen bonds via the silanol groups and also 
become mechanically intertwined forming a tertiary structure 
called agglomerates. The size of these agglomerates can span from 
several microns to several hundred microns. Due to the much 
larger size and irregularities associated with an agglomerated 
particle, more aggressive shear conditions would be required to 
distribute the silica more uniformly on the toner surface. Such 
conditions could lead to silica becoming embedded and affect the 
toner itself. In the end, the structure and size of the agglomerate 
results in particle dispersibility unto the toner being compromised. 
Poor dispersibility of the external additive can lead to non-uniform 
behavior with respect to the toner’s flow, charge and stability 
leading to sub-standard print performance and longevity. 

In an earlier paper we presented a study comparing structure 
modified de-agglomerated fumed silica to that of traditional fumed 
silica[1]. The conclusion then was that de-agglomerated silica 
dispersed more efficiently and thereby led to improvements in 
toner flow, charging characteristics and charge stability. In this 
study, the work is a continuation and extension of the effects 
structure modification has on performance. 

1. Introduction  
Fumed silica is generally characterized by three distinct 

parameters: 1) particle size and distribution, 2) surface 
chemistry/treatment and 3) structure. When speaking of silica 
structure, there are two “forms” we will refer to: the aggregate and 
the agglomerate. The aggregate structure is a fusion of primary 
particles held together with strong forces that is not divisible by 
ordinary means. The agglomerate is a collection of these 
aggregates which are held together by weak forces and mechanical 
entanglement and will break down to aggregates with sufficient 
application of shear forces. 

Typically, the smaller agglomerated structures (aggregate 
clusters) will require more intense shearing to break down to the 
aggregate structure. Furthermore, the surface treatment employed 
can affect the agglomerate’s “stability”. The poly-
dimethylsiloxane (PDMS) treatment tends to result in an 
agglomerate which is more resistant to shear as compared to a 

dimethyldichlorosilane (DDS) treatment due to the 
adhesive/cohesive differences. To achieve a uniform mass 
distribution of a small, adhesive external additive on the toner 
particle will require more energy and as a byproduct of this 
process, result in more heat being generated. 

As the market shifts to raw toners with lower glass transition 
temperatures (Tg), the incidence of toner deformation, additive 
embedding and particle-particle adhesion will increase. Another 
aspect of a lower Tg, chemically produced toner (CPT) to be 
considered is the adhesive surface presented to the silica 
agglomerate. When the agglomerate initially adheres to the tackier 
toner surface, the agglomerate can require more energy and time to 
break down to the smaller aggregates - if it isn’t embedded into the 
toner first. 

A conventionally milled toner due to its irregular shape would 
help break down silica agglomerates somewhat better in a mixing 
process than a chemically produced toner (CPT) which has a more 
spherical shape. This rounder shape of the CPT exerts less shear 
on the silica agglomerate during mixing.  

One potential remedy is the development of external silica-
based additives that can disperse rapidly and uniformly on the 
toner surface with a minimal amount of shear. Reducing shear 
force also minimizes heat generation from the process, which is 
advantageous for the lower Tg toners. Structure modified silica 
have been shown to disperse quickly, efficiently and cover the 
toner surface more uniformly[1]. 

This paper will explore the de-agglomeration of silica types 
that vary based on surface treatment, structure modification and 
particle size in order to enhance the dispersibility of silica in terms 
of rate and coverage on a toner particle. 

2. Experimental Procedures 

2.1. Materials 

2.1.1 Core materials 
The fumed silicas used in this work were supplied by Evonik 

Industries AG and NIPPON AEROSIL CO., LTD. and produced 
by established processes previously described[2]. The pyrogenic 
process to make fumed silica has great versatility to produce 
average primary particle sizes ranging from 7 to approximately 
100 nm[3], encompass a variety of hydrophobic treatments and 
structure modifications.  

2.1.2 Structure modification 
Two distinct processes have been used to alter the 

agglomerate structure of the silica particles of interest. The process 
details are beyond the scope of this paper. However, one of the 
obvious effects, which are dependent on the agglomerate altering 
process employed, is the change in bulk density. A standard silica 
would typically have a bulk density in the range of ~40 – 50 g/l. 
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The high energy process (herein called structure modification) 
used to produce the AEROSIL® R 9200 (sample “D4”) material 
yielded a bulk density of 171 g/l. This process substantially 
increases bulk density over the starting core powder. Employing a 
lower energy process (herein called de-agglomeration,), on 
AEROSIL® RY 300 (sample “L3”), R 974 (sample “L4”) and R 
972 (sample “L2”), reduced bulk density. The decrease in bulk 
density values, between the standard (samples designated with an 
“A” prefix) and de-agglomerated version (samples designated with 
the “L” prefix), is as little as 23% for the AEROSIL® R 972 
(sample A2 vs L2), 35% for the AEROSIL® R 974 (sample A4 vs 
L4) and as much as 57% for the AEROSIL® RY 300 (sample A3 
vs L3). Particle size and surface treatment are two other distinct 
variables contained in this work as defined in Table 1. 

Table 1: General characterization of fumed silica samples 

Sample 
ID 

BET 
(m²/g) 

1° Particle 
Size (nm) 

Surface 
Treatment 

Bulk 
Density 

(g/l) 
A3 300 7 PDMS 51 
L3 300 7 PDMS 22 
A4 200 12 DDS 49 
L4 200 12 DDS 32 
D4 200 12 DDS 171 
A2 130 16 DDS 52 
L2 130 16 DDS 40 
 
Fumed silica is commonly treated with a hydrophobic reagent 

to affect the flow, charge behavior and stability of the toner. While 
there are a variety of silanes that are used to modify the silica 
surface[4], for this study PDMS and DDS  treated silicas were 
selected.  

2.1.3 Toner formulations 
The toner used for this investigation was an 8 µm polyester 

negative-type black toner. In all cases, the amount of silica on 
toner is 1.00 ± 0.01% (wt/wt). Using a commercial lab blender, the 
toner and additive were first pre-mixed for 3 intervals of 10 
seconds (with a 10 second cool down period between each 
interval) at an intermediate speed setting of 3. The samples were 
then sieved through a 300 µm screen. The material which passed 
through the screen was collected and placed in an environmental 
chamber at 25°C and 50% relative humidity for 24 hours minimum. 

After conditioning, 2 grams of the specific toner-silica 
mixture was added to 48 grams of non-coated ferrite carrier 
(PowderTech Co. F150).     

2.2. Methods 

2.2.1 SEM analysis of toner mixtures 
SEM images were taken of the toner particle with the various 

silicas to see the quantity and quality differences of silica coverage.  

2.2.2 Dispersibility (particle size distribution) 
In order to compare the dispersibility of members of a class of 

similar silica external additives, an indirect technique, earlier 
described[1], was used.  In this method the silica’s particle size 
distribution is measured (Horiba Particle Size Analyzer LA-950) 

in ethanol while applying set amounts of shear through sonication. 
Through careful control of time and shear conditions, the relative 
dispersibility of the silica can be ascertained. 

2.2.3 Tribo-electrostatic charge (T-ESC) 
T-ESC was measured using a blow-off type electrostatic 

charge meter (Vertex T150). A sample of toner (2 g) was 
combined with a non-coated ferrite carrier (48 g) and agitated with 
a Turbula mixer. All sample preparation and measurement was 
carried out in a constant temperature/constant humidity room. 

2.2.4 Charge distribution 
The charge distribution was determined with a q-test (Epping 

GmbH). The toner formulation was agitated with a non-coated 
ferrite carrier using a Turbula mixer before measurement. 

3. Results and Discussion 

3.1. SEM analysis of toner mixture 
Figure 1 shows the SEM images of the PDMS treated silica 

(A3 and L3) after blending for a 10 second interval 3 times (total = 
30 seconds) on a commercial lab blender. These images show the 
same effect as seen from previous work with AEROSIL® RY 
200[1]. A greater quantity of the de-agglomerated silica version 
(sample L3) can clearly be seen on the toner particle’s surface and 
it is distributed more uniformly as compared to the standard 
sample A3. 

  

 
Figure 1. SEM images of AEROSIL® RY 300 ( A3 - top) and RY 300 L (L3 -
bottom) on the toner particle’s surface (agitation time is 1 minute) 

In contrast to the PDMS treated silica without the benefit of a 
de-agglomeration process (sample A3), the three DDS treated 
silicas covered the toner surface better qualitatively and 
quantitatively [Figure 2]. The de-agglomerated silica (sample L4) 
dispersed onto the toner surface in a greater quantity than the 
structured modified silica (sample D4). Under these shear 
conditions we see slight differences between the standard structure 
A3 sample and the de-agglomerated L4 sample.  In Figure 2, it 
appears that the standard structure silica (sample A4) exhibits large 
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Sample    ID

MeOH 
Wettability 

(%)
Initial Particle 

Size (µm)

Time To 
Breakdown 

(sec)

Size at 
Breakdown 

(µm)
A3 80% 84.03 >480 n/a
L3 75% 14.46 60 0.23
A2 55% 63.7 240 0.18
L2 50% 0.29 Immed. n/a
A4 45% 65.55 240 0.41
L4 45% 0.29 Immed. n/a
D4 50% 25.16 >480 n/a

clumps compared to the evenly distributed de-agglomerated silica 
(sample L4). This difference is subtle however and its impact on 
toner performance requires further testing. 

 

 
Figure 2. SEM images of DDS treated silicas with different structuring 
processes:A4 – Standard, L4 – Low Energy and D4 – High Energy. 

3.2. Dispersibility 
Using our indirect technique to characterize dispersibility, the 

initial particle size was measured on the various samples. The 
samples were then sonicated with the time required to achieve a 
particle size of less than 1 µm and the particle’s size at breakdown 
being recorded [Table 2]. The methanol wettability values are an 
indication of silica surface’s hydrophobicity. The PDMS treated 
samples (A3 and L3) have more hydrophobic character than the 
remaining DDS treated samples. Also note that the de-
agglomeration process does not affect the silica’s hydrophobicity. 

Table 2: Methanol dispersibility of study samples 

 

From the above table, samples L2 and L4 did not require 
sonication to achieve a sub-micron particle size. While the  L3 
sample required 60 seconds, the remaining samples did not 
achieve a particle of less than 1 micron after sonicating for 480 
seconds. 
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Figure 3.  Particle size distribution of samples L3 and A3 

Figure 3, above, shows the particle size distribution of sample 
A3 and the de-agglomerated version, sample L3 in ethanol after 60 
seconds of sonication. The graph clearly shows the particle size 
distribution has shifted into the sub-micron region and indicates 
the de-agglomeration process enables the silica particles to be 
dispersed more readily than silica without the benefit of this 
process. 

A similar observation is made when sample A4 undergoes the 
de-agglomeration process. However, the transition to the narrower, 
sharper distribution of the agglomerate structure does not occur for 
the material processed via the structure modification process 
(sample D4).  

In comparing the two graphs [Figures 3 and 4], the de-
agglomerated sample L4 has a near unimodal distribution, in 
contrast to the A3, L3 sample series or the structure modified D4 
sample. 
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Figure 4. Particle size distribution of DDS treated silicas 

3.3. Charge strength and charge distribution 
Charge strength and charge distribution of the samples were 

measured as a function of mixing time. The results show the 
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charge strength of the toner, without benefit of an external additive, 
and the effect silica addition has on the toner’s charge behavior. 
The silica was incorporated with toner using a Turbula mixer 
rotating at 24 rpm for the time specified on the graph’s x axis. 
Silica addition consistently increased the magnitude of the charge 
on the toner [Figure 5] as expected. The de-agglomerated, PDMS 
treated silica (sample L3) charges up faster than the standard A3 
silica and is in agreement with previous work [1]. In the 
comparison between A4 and the de-agglomerated version, L4, it 
was surprisingly to see the responses are nearly identical. The high 
energy structure modified silica, D4, shows a quick charge-up 
followed by a level response with additional mixing time.  

 

-70

-60

-50

-40

-30

-20

-10

0
0 5 10 15 20 25 30

Mixing Time (sec)

T-
ES

C
 (u

C
/g

) Toner Only
D4
A4
L4
A3
L3

 
Figure 5. Charge strength of toner:silica mixtures and response to mixing  

When the external additive has been uniformly dispersed on 
the toner surface, changes in charge distribution should be small.  
As seen in Figure 6, the de-agglomeration process has enabled the 
toner to have a consistent response after 5 and 30 minutes of 
mixing. 
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Figure 6. Charge distribution of toner:silica mixtures and response to mixing 

In Figure 7, the charge distribution curves for DDS treated 
silicas are presented. The three DDS treated samples have 
comparable charge and distribution, relative to each other, after 5 
minutes of mixing, indicative of the rapid and uniform dispersal of 
silica on the toner.  

The distribution curves are sharper and narrower as compared 
to the AEROSIL® RY 300 series in Figure 6 (samples A3 and L3). 
After 30 minutes of mixing, the structure modified and de-

agglomerated samples still have a narrow distribution yet both are 
broader slightly relative to the standard sample A4. 
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Figure 7. Charge distributiion of toner: silica mixtures and response to mixing 

4. Conclusions 
The treatment of the particles with a low energy de-

agglomeration process consistently results in a fumed silica 
particle which disperses more readily and uniformly as seen in this 
work and a previous study[1]. The benefit of the de-agglomeration 
process does not appear dependent on the specific surface 
treatment (hydrophobicity) or surface area (particle size). 

The de-agglomeration process as applied to the AEROSIL® R 
972 and R 974 samples (sample L2 and L4) resulted in charge 
behavior characteristics similar to the standard sample in spite of 
observable differences in dispersibility. It is suspected that the 
mixing regimen was too aggressive resulting in potential 
differences in charge behavior being negated. A less aggressive 
incorporation method for the silica-toner mixtures will be 
investigated. 

Of continued interest is the development of this low energy 
process and its implications on low Tg toners where the mixing 
regimen must impart minimal shear (and heat) to prevent toner 
deformation and silica embedding.    
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