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Abstract 

A high resolution ion print head architecture which utilizes 
micro-dielectric barrier discharges (mDBD’s) has been developed 
for charging of surfaces in electrophotographic (EP) printing.  The 
mDBDs consist of arrays of micro-plasma devices (10-100 μm 
diameter) fabricated using MEMS techniques.  A radio frequency 
(rf) voltage waveform biases an electrode which is buried in a 
dielectric substrate.  A third biasing electrode separated by 
hundreds of microns from the dielectric surface is used to extract 
electron charges.  To aid in the development and improve the 
performance of ion-head charging systems, a first principles, 
multi-dimensional computer modeling investigation has been 
conducted.  The dynamics of the plasma and charging of the top 
surface as a function of rf frequency, voltage waveform and 
material properties will be discussed, with comparison of our 
results to experiments. 

Introduction 
 Electron current extraction from microplasmas is attractive 
due to its potential application for surface treatment with high 
spatial resolution.  Among all the microplasma configurations, 
dielectric barrier discharges (DBDs) [1] are becoming a favored 
device particularly when operating at higher pressures due to their 
intrinsic stability against arcing. 

DBDs are often used for stable, high-pressure and non-
thermal plasma sources.  The plasma in DBDs is sustained 
between dielectric covered electrodes.  The electrodes are driven 
with ac voltages of tens of Hz to radio frequency (rf) – MHz.  
When DBDs are operated in a filamentary mode, upon initiation 
the plasma propagates across the gap as a streamer.  The streamer 
electrically charges the opposite dielectric surface and removes the 
local potential drop across the gap.  As the gap voltage falls below 
its self-sustaining value, the plasma is then terminated.  When the 
polarity changes on the following half ac cycle, a more intense 
electron avalanche occurs at the same location due to the higher 
voltage across the gap from the previously charged dielectrics.  
The plasma is then re-ignited with each rf cycle.  Micro-dielectric 
barrier discharges (mDBDs) are a variant of DBDs where, through 
use of MEMS technology, the plasma filaments in micro-scale 
DBDs can be spatially and temporally well controlled.  In certain 
applications such as area selective micrometer surface treatment 
[2], a third electrode [3,4] can be used to extract electron current 
out of the mDBDs.  As such, mDBDs can be used as sources of 
charge in ionographic printing.       

mDBDs operated at atmospheric pressure have been 
developed to generate electron current sources for uniformly 
charging or patterning dielectric surfaces.  In this application, an 
electron current beam tens of microns in diameter is extracted out 
of a mDBD cavity.  Although arrays of these mDBD devices can 
be used to charge large areas, we will focus our attention in this 
paper on the operating characteristics of a single mDBD.  A 

schematic of a single nozzle ion head is shown in Fig. 1.  The 
device consists of a cylindrical micro-cavity 65 μm in diameter in 
a grounded electrode, separated from an rf powered electrode by a 
dielectric sheet 15-20 μm thick having a relative permittivity εr up 
to 20.  The rf electrode is buried in a printed-circuit-board.  The 
positively biased current extraction electrode is separated from the 
mDBD cavity by 400-500 μm.     

In this paper we discuss results from a computational 
investigation of this single nozzle ion head using a mDBD 
configuration.  The model used in this investigation, nonPDPSIM, 
is a first principles, two-dimensional multi-fluid hydrodynamics 
simulation performed on an unstructured mesh [5].  nonPDPSIM 
solves transport equations for charged and neutral species, 
Poisson’s equation for the electric potential and the electron 
energy conservation equation for the electron temperature.  A 
Monte Carlo simulation is used to track sheath accelerated 
secondary electrons emitted from surfaces.  Rate coefficients and 
transport coefficients for the bulk plasma are obtained from local 
solutions of Boltzmann’s equation for the electron energy 
distribution.  Radiation transport is addressed using a Green’s 
function approach.    

Plasma Dynamics and Current Extraction 
 The plasma dynamics in the mDBD cavity and current 
extraction to the extraction electrode will first be discussed.  The 
operating conditions are 1 atm of N2 with 0.01% of O2 as an 
impurity at 300 K.  The rf electrode is biased with 1.4 kV ac at 25 
MHz.  The top extraction electrode is biased with a 2 kV dc.  The 
time evolution of E/N (electric field/gas number density) and 
electron density in the mDBD cavity are shown in Fig. 2 over a 
single cycle.  The electron density in the plume of extracted 
electron current is shown in Fig. 3.  During the negative cycle of  
 

 
                                                                                                                  
Figure 1. Schematic of a typical single nozzle ion head. 
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the applied rf voltage, the positive ions in the mDBD cavity drift 
towards the dielectric and charge it positively.  When the rf 
potential (Vrf) crosses from negative to positive at the beginning of 
the cycle (t = 0 ns in the figures), the electric field produced by the 
net voltage in the gap between the top biased electrode and the 
positively charged dielectric is insufficient for electron current 
extraction.  The electrons in the mDBD drift towards the dielectric 
and begin to neutralize the positively charged surface.  Before the 
positive peak of Vrf at t = 10 ns, the negative charge collected on  

 
the dielectric has neutralized a sufficient amount of the positive 
charge that there is a net extracting field that accelerates the 
electron plume out of the mDBD cavity.  A small flux of electrons, 
the prepulse, escapes from the cavity and is accelerated towards 
the top extraction electrode.  This prepulse is magnified with large 
values of dV/dt hence is more prominent at higher rf frequencies.   
 When Vrf decreases to zero at t = 20 ns, a negative potential 
still exists on the dielectric due to the previous collection of 
negative charges.  At this point, the electric field at the opening to 
the mDBD cavity extracts the electron plume from the cavity, 
which then reduces the electron density in the mDBD cavity.  At 
the same time, electron ionization sources in the cavity reach their 
maximum values (1025 cm-3s-1) due to avalanching of the 
remaining residual electrons in the mDBD cavity and by 
secondary electrons emitted from surfaces in the cavity.  This 
avalanche then enhances the current extraction to the top biased 
electrode.  The electron plume reaches its greatest extent at 30 ns 
at the negative peak of Vrf.  As this proceeds, positive ions are 
being collected on the dielectric, which reduces the voltage drop 
across the gap.  The electron plume then begins to diminish and 
nearly extinguishes.  The cycle then restarts.       

 
 
Figure 2. Time evolution of electron density (log scale, cm-3) and E/N 
[contour labels in Td (10-17 V-cm2)] in the mDBD cavity at different 
phases of rf driving voltage of 1.4 kV during a 40 ns (25 MHz) cycle.   

 
 

Figure 3.  Electron plume density (log scale, cm-3) in the gap at 
different phases of the rf driving voltage of 1.4 kV during a 40 ns (25 
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Current Collection: Frequency Effect   
 Current collection on the top extraction electrode is 
sensitive to the rf driving frequency and extraction voltage.  
Extracted conduction current on the top electrode is shown 
in Fig. 4 for rf frequencies of 2.5 to 25 MHz.  Experiment 
measurement of electron current at 2.5 MHz with lower 
extraction voltage (and so lower current) is show in Fig. 5 
for comparison.  At 25 MHz, a pre-pulse electron current of 
0.3 mA is collected the on top biased electrode and is  

 
followed by a larger main current pulse.  At 15 MHz, the 
pre-pulse is reduced to 0.1 mA due to the smaller dV/dt.  
Note that the main current also has greater peak value at 
higher frequencies as a consequence of this high dV/dt.  At 
5 and 2.5 MHz, the pre-pulse current is suppressed, and the 
main current breaks into multiple current pulses.      
 The multiple peaks in extracted current driven at lower 
frequencies are a consequence of periodic bursts of ionization in 
the mDBD cavity.  As mentioned, when Vrf changes its polarity 
from positive to negative voltage, a negative potential exists on the 
dielectric due to the previous collection of negative charges.  The 
electron plume is accelerated toward the top biased extraction 
electrode which reduces the electron density in the mDBD cavity.  
As the frequency decreases and the rf period becomes longer, there 
is sufficient electron current extracted to deplete the cavity.  The 
local electric field then rebounds and produces ionization.  The 
electron density is then repopulated in the cavity which enables 
another burst of electron current to be collected.  If Vrf has not yet 
changed sign, the process can repeat itself.  As a result, the main 
current breaks into multiple current pulses at lower frequencies (5-
2.5 MHz).   

The multiple pulses of current at 2.5 MHz are 
experimentally observed when using a similar sandwich mDBD 
device operated under similar conditions.  The experimental 
voltage drop between the rf and discharge electrode and current 
collection on the top electrode are shown in Fig. 5.  In the 
experiment, the top extraction electrode is grounded, a -1 kV dc 
bias is applied to both the rf and discharge electrode, while the rf 
electrode is also biased with 1 kV ac voltage at 2.5 MHz.  (This 
biasing is electrically equivalent to what was used in the model.) 
The results from the simulation (shown in Fig. 4, 2.5 MHz) are in 
basic agreement with the experiment data.  The smaller current in 
the experiment which can be attributed to the smaller rf and 
extraction voltage, and capacitance of the dielectric sheet.  The 
predicted triple current pulses extracted at the zero crossing of the 
rf voltage are corroborated by the experiment. 

Total Charge Collection   
 Time integrated charge collection on the top electrode as a 
function of time for different rf frequencies, rf voltage and 
permittivity of the dielectric are shown in Fig. 6.  By increasing 
the  

 
                                                                                                             
Figure 4.  rf potential (dash line, volts) and collected current (solid line, 
mA) for Vrf=1.4 kV and extraction voltage of 2 kV.  rf frequency ranges 
from 2.5 to 25 MHz.    

 
                                                                                                       

Figure 5.  Experimentally observed triple current pulsed obtained at 2.5 
MHz in the same sandwich mDBD device for equivalent biasing as in the 
simulation.
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rf driving frequency, charge collection increases due to the higher 
repetition rate.  At lower frequencies, charge collection is limited 
by capacitance of the dielectric layer above the rf electrode, while 
at higher frequencies, charge collection is limited by the shorter rf 
period.  The end result is that the charge/pulse is not that different.  
Integrated charge collection also increase with rf driving voltage.  

In general, a higher electron density in the cavity is produced due 
to the larger E/N and ionization rate from bulk plasma and sheath 
accelerated secondary electron ionization.  Charge collection 
increases nearly linearly with εr.  Since the intervening dielectric 
acts as a capacitor whose capacitance scales with εr, its charging 
characteristics and time integrated charge collection on the top 
electrode scales with εr. 
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Figure 6.  Time integrated charge collection on the top 2 kV biased 
electrode.  a) rf frequencies of  25 to 2.5 MHz. b) Vrf=1.4, 2.8, 4.2 and 
5.6 kV. c) ε/ε0=20, 10, 5 and 2. 
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