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Abstract 

A numerical study has been conducted for accurate 
prediction of temperature in the toner layer including moisture 
phase change in porous media (paper). The moisture contents, in 
previous study, have been found experimentally to influence the 
heat transfer behavior significantly in the fusing process. Heat and 
mass transfer equations were incorporated into fusing processes 
analysis to consider the energy loss due to the evaporation of 
moisture in the paper. The effects of moisture content, dwell-time, 
fusing temperature, paper grammage,  and heating energy from 
heater on fusing behaviors were numerically investigated by using 
the present numerical model. 

Introduction  
In electrophotographic printer, fusing process is fixing 

technique where the conveyed toner particles on the paper are 
heated up and pressed simultaneously in the fuser nip to be fixed 
on the media via softening, coalescence, melting and sintering of 
the powder [1]. Since these changes occur in a few milliseconds 
and are difficult to track the transient heat transfer characteristics, 
considerable numerical efforts have been devoted to understand 
the fusing processes by using discrete element modeling [2], 
considering toner rheology [3], or including the existence of air 
gap [4]. 

 Although 99% of the heat energy in fusing processes is 
consumed by heating the paper and 14% among that energy is 
dissipated to evaporate the moisture in the paper [5], the existing 
numerical models generally ignored the moisture content effect. 
Thus, understanding of moisture content should be critical for 
accurate simulation of fusing processes. In this study, a numerical 
model was developed including moisture phase change in the 
paper, especially for the sorbed water [5]. And evaporation rate 
equation [6] was formulated into heat and mass balance equations 
to consider the moisture content change during fusing processes. 
Then, the effect of moisture content was studied and the results 
were discussed in detail. 

Theories and calculation 

Physical model 
The physical model of fusing processes including moisture 

phase change in the paper is depicted in Figure 1. Initially, at the 
state I, the heat roller is heated up to the target temperature by the 
radiative heat transfer from the infrared halogen heater. By the 
rotating configuration of fusing system, the pressure roller also 
reaches to the energy balanced temperature, usually lower than the 
target temperature. Then, the transferred toner on the paper is fed 
into the fuser nip. Subsequently, the toner, paper, and moisture 
begin to heat up by the thermal energy due to conductive heat 

transfer from the heat roller, the pressure roller, and heat flux from 
halogen heater during the dwell time. 

While the paper is in the fuser nip, the surfaces of heat roller 
and pressure roller are impermeable thus the moisture flux is 
captured in the paper between the rollers. However once the paper 
with fixed toner layer comes out from the fuser nip (state II to III, 
Figure 1), the vapor flux within the paper is released into the 
atmosphere through the pores of the paper. 

 Note that we divided the physical model into six layers for 
fusing phase (form state I to II) and two layers for evaporating 
phase (from state II to III).  
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Figure 1. Physical model for fusing processes with sorbed water in the paper. 

Properties 

Paper: moisture ratio, content, and weight based properties 
For proper evaluation thermophysical properties in the fusing 

processes, the amount of moisture in the paper should be 
quantified first. In this regard, moisture ratio in a paper volume 
cell is defined as 
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where wm  is the mass of water content in the paper and dpm  is 
the mass of dry paper, whereas moisture content is defined as 
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 Due to its linearity and better reflection of variations of water 
content, in this study, the moisture ratio is used for calculation 
while the moisture content is used for all figures. Then, the weight 
based properties of paper can be calculated as [7] 
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where  fiberpc , and wpc ,  are the specific heat of fiber and water.  

Toner: Specific heat 
Although the actual specific heat of toner can be measured 

using DSC (Differential Scanning Calorimeter), in this study, 
along with the 4 stages of toner in the fusing processes (warming, 
softening, melting, and liquid like behavior), the temperature 
dependent specific heat is modeled as shown in Figure 3. [2] 
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Figure 2.  Temperature dependent specific heat of toner. 

Mass conservation equation 
The conservation of mass for moisture in a porous media can 

be written as  
 

0=⋅∇+
∂
∂ u

t
φρ

φρ  (4) 

  
The mass flux by evaporation between the paper surface and 

surrounding air can be expressed as Stefan equation [6] 
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where K is the mass transfer coefficient, wM is the molecular 
weight of water, gp is the pressure of air air, T  is the temperature, 

and R is the gas constant.  
 The partial pressure for water vapor in the air is given by [8] 
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where airφ  is moisture ratio of air and the partial pressure for 
water vapor for paper surface is given by [9] 

 

freevpaperv pp ,, η= . (8) 
 

where freevp ,  is partial pressure for free water and η  is sorption 
isotherm which has value zero to one. The partial vapor pressure 
for free water is determined using Antoine’s equation 
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The empirical sorption isotherm for paper is written as [10] 
 

)10085.058.47exp(1 0585.1877.1 φφη T−−−= . (10) 
 
Equation (8) state that the partial pressure at the paper surface 

is equal to the partial pressure for free water so long as capillary 
transport can bring new water to the paper surface but becomes 
zero as the paper is dryer.  

Energy conservation equation 
The conservation of energy is written as  
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where sHΔ  is the heat of sorption needed to evaporate the sorbed 
water besides vapHΔ is the latent heat of vaporization for water. 
The heat of sorption is defined using Clausius-Clapeyron relation 
and obtained by applying the relation to Eq. (10) as [9] 
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During the iterative calculation for a time step to solve the 

nonlinearity of the Eqs. (11) and (12), the moisture ratio φ  in the 
computational region was calculated first by solving the mass 
conservation equation of Eqs. (5), (6), (7), (8), (9), and (10). Then, 
the energy conservation equation of Eq. (11) was solved to obtain 
the temperature with the heat of sorption energy, Eq. (12), 
calculated at previous iterative step. Once the predetermined level 
of accuracy was satisfied, the iterative calculation for a time step 
terminated and that of the next time step began.  

Results and discussion  

Fusing processes behavior 
The general fusing process behaviors with moisture phase 

change in the paper were investigated for the operating conditions 
in Table 1 and 2. Figure 3 shows the evolution of the moisture 
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content and the temperature of each computational layer (heat 
roller, coating, air gap, toner, and paper) of present numerical 
model during the fusing phase and evaporation phase. In Figure 3a 
showing the result in 0.1 sec, the moisture content is found to be a 
dominant effect on the heating rate of the toner and the paper 
comparing to the result of simulation excluding moisture content 
effect. By including moisture in the paper, the overall heat 
capacity of the paper increases, and then the temperature at the end 
of the fusing phase dropped by approximately 5 °C on the paper 
and 2 °C on the toner, respectively. Since the temperature of the 
toner layer is the criteria for the adhesive and cohesive 
characteristic of the powder, the degree of fusing, crucial print 
quality, can be affected by the including moisture content in the 
paper. Note that, during the fusing phase, due to the impermeable 
boundary condition, the mass transfer in the paper is not allowed 
and thus the moisture content is uniform. 

In Figure 3b, illustrating the result in 20sec, the moisture 
content in the paper is observed to be significantly changed from 
7% to 1.9% due to its evaporation. However, the dramatic falling 
of the moisture content is occurring right after the paper brings out 
from the fuser nip and recovers in a few seconds to the saturated 
condition. This result indicated that, when the moisture content is 
experimentally measured, the result can be affected by the 
measuring point.  
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Figure 3. Fusing behavior simulated with or without the moisture content 
inside the paper: the evolution of the temperature and moisture content 
displayed (a) in 0.1 seconds and (b) in 20 seconds. 

Sensitivity analysis 
Sensitivity analysis is conducted for the bottom temperature of 

the toner layer corresponding to the five operating parameters 
(moisture contents, dwell time, fusing temperature, paper 
grammage, and heating energy) varying values listed in Table 3.  

Table 3. Parameters for sensitivity analysis. 

paperx  2%, 7%, and 12% 

dwellt  30 ms, 40 ms , and 50 ms  

fusingT  160 °C, 170 °C, and 180 °C 

paperg  70 g/m2, 80 g/m2, and 90 g/m2 

dutyd  0%, 50%, and 100%  

 
The function of the toner’s bottom layer temperature can be 

expressed as  
 

),,,,(, dgTtxfT bottomtoner =  (13) 
 

 
where t  is the dwell time, g is the paper grammage, and d is the 
duty controlling the heat energy from heater. By assuming the 

Table 1. Geometry and properties of layers [2, 3]. 

Layer δ  
[mm] 

k  
[W/m-K] 

ρ  
[kg/ m3] 

pc  

[J/kg-K] 
Roller 1.0 210 2698.9 900 

Coating 0.03 0.22 2120 1050 

Air gap 0.005 0.0263 1.1614 1007 

Toner 0.014 0.15 1200.0 1300-1900 

Paper(fiber) 0.1 0.08 800.0 1450 

Elastomer 4.0 0.281 1120.0 1546.1 

     

Table 2. Parameters and expressions for the fusing process. 

∞h  15.0 W/m2-K 

K  0.06 m/s a 

wM  0.01801528 kg/mole 

gP  101300 Pa (=1atm) 

heaterq  50525.3 W/m2  

dwellt  40 ms 

∞T  23 °C 

CoatingHRinitialT &,  170 °C 

PaperToenrAirinitialT &,,,  23 °C 

PRinitialT ,  100 °C 

evapHΔ  2260000.0 J/kg 

airφ  0.00888  at 23 °C and HR 50% 

initialpaper ,φ  0.075268 at %7=paperx ,   

a  Åkesson et al (2006) 
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superposition principle for the operating parameters, the partial 
derivative form of Eq. (13) is written as 
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where the sensitivities of each parameter are displayed in Figure 4. 

Figure 4 shows that the temperature of toner layer was more 
sensitive to the moisture content effect rather than the effect of 
paper grammage, and thus considering moisture content effect is 
required for the accurate temperature prediction.  

Moreover, Eq. (14) states that the linear summation of each 
change of the operating parameter results in the change of the 
bottom temperature of the toner layer. In other words, for 0=Δf , 
if the paper grammage changed from 70 g/m2 to 90 g/m2, fusing 
temperature should be increased by 3.5 °C to attain the desired 
fusing quality while 2 °C increase is needed for the change of the 
moisture content, from 7 % to 12 %.  
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Figure 4.  Sensitivity of the operating parameters for the bottom temperature 
of the toner layer. 

Conclusion  
A numerical study, considering moisture content in the porous 

media, was conducted for accurate simulation of the fusing 
processes. Present numerical model was developed on the basis of 
the previous numerical framework [2, 4]. In addition, an 
evaporation model for sorbed water [7] was combined with the 
numerical framework for detailed consideration of moisture 
content effect on fusing behaviors. 

The effect of moisture contents in the paper was found to 
significantly drop the temperature in both paper and toner layer, 
which can affect the print quality. It was also observed that the 
amount of moisture content in the paper was dropped rapidly right 
after the paper brought out from the fuser nip and gradually 
recovered to the saturated condition. In addition to the effect of 
moisture content, the effect of dwell-time, fusing temperature, 
paper grammage, and heating energy from heater on fusing 

behaviors were numerically studied using sensitivity analysis. It 
was found that the temperature of toner layer was more sensitive to 
the moisture content effect rather than the effect of paper 
grammage, and the result of sensitivity analysis was able to 
suggest the guidelines to attain the desired print quality. 

In conclusion, the numerical model proposed in this study is 
expected to be a useful tool for predicting and optimizing fusing 
processes. 
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