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Abstract 

Three-dimensional stacking and integration (incl. Through 
Silicon Vias - TSV) of microelectronic devices are modern 
techniques with great potential in industrial application, but face 
severe cost-disadvantages. In this paper, a new filling technique for 
TSV based on inkjet printing with a high cost-saving potential is 
proposed. We give a brief explanation of this new technique and 
present first results of processed samples. 

Our TSV processing technique can be summarized in three 
major steps. In step one, multiple structures are pre-etched in 
standard silicon wafers. These structures require an electrical 
isolation from the surrounding substrate. In step two, a standard 
piezoelectric inkjet nozzle is used to print our self-developed silver 
ink into these structures, forming the vias. After the ink is dried, in 
the third and final step, the samples are sintered. Finally the TSV 
samples are analyzed by cross sectional polishing and a scanning 
electron microscope. 

This paper proves the feasibility of inkjet printing of TSVs by 
homogeneous covering of via side walls with silver particles. 

Introduction  
The shrinkage of semiconductor devices’ footprint and 

package size has been the major cost driver in semiconductor 
industries over the last decades [1]. Through Silicon Vias (TSV) 
permit the vertical interconnection of 3D-stacked semiconductor 
devices by directing the electrical signal from the front side 
through the  substrate to the backside of the device [2]. Hence, 
TSV enable more chip packaging concepts than common 2D-
integration techniques and offer promising solutions to multi chip 
packaging challenges. Micro-electromechanical systems (MEMS), 
e.g. acceleration sensors, require interconnections to their signal-
processing circuits. Further on, logic and memory devices are 
combined by several approaches requiring interconnections. Wire 
bonding is a common technique for semiconductor 
interconnections but faces difficulties with the increasing demand 
of a higher signal speed, less power consumption and lower heat 
dissipation. Besides, bond pads require a major part of a chip’s 
footprint. Bond wires can also act as inductors and may, thus, 
cause electromagnetic compatibility issues. 

In recent years, inkjet printing of particle inks has drawn a lot 
of attention due to its applicability in various fields. For printing, 
particles with a size ranging from a few microns to only some 
nanometers [3] are dissolved in suitable solvents. Concerning thick 
film microelectronic components, conductors, resistors, capacitors 
and inductivities [4] have been realized. Used substrates vary from 
ceramics to a variety of flexible substrates [5]. 

We present a novel TSV metallization technique using inkjet 
printing, which shows a high cost-saving potential. In addition to 
its cost-efficiency, inkjet printing offers many advantages 
compared to complex thin-film processes for TSV metallization. 

Being a non-contact and additive process, inkjet printing has a 
great flexibility in terms of substrate characteristics like 
topography and wafer bow. Also, horizontal wire connections may 
be printed in the same process step as the TSV metallization, 
saving time and lithography layers. 

Materials & methods 

Wafer preparation 
Our TSV metallization technique addresses a via-last process, 

i.e. fabricating the vias after CMOS and MEMS processing. 
Hence, the TSV process has a temperature budget of 400 °C and 
must be non-destructive to the MEMS structures. The silicon 
wafers are fabricated by standard MEMS processes. Anisotropic 
deep reactive ion etching (DRIE) allows for a high aspect ratio at 
TSV formation. In order to achieve large via depths, etching 
selectivity is enhanced by depositing a tetraethylorthosilicat 
(TEOS) hardmask prior to the DRIE. The electrical sidewall 
isolation separating the silver ink from bulk silicon is deposited 
from TEOS sub-atmospheric chemical vapor deposition. Before 
filling the vias with silver ink, the TEOS passivation layer is 
opened at the via bottom by back-etching to enable an electrical 
contact. 

Ink preparation & properties 
Three main aspects have to be considered when designing a 

particle loaded inkjet ink: wetting behavior of the substrate, 
requirements of the specific printing system and sintering behavior 
of the particles. 

When printing TSVs an ink featuring a high wettability, i.e. a 
low contact angle on the substrate is desirable as this will allow for 
ink spreading over the whole via column. In particular, ink flow 
into the pre-etched vias will be supported, thus allowing the 
particles to enter the via. Wettability strongly depends on the polar 
and dispersive surface tension of the substrate and the ink. The 
particles do not affect the inks surface tension [6]. Hence, 
measurements are conducted without particle loading. Figure 1 
shows the side view of a contact angle measurement of the used 
solvent, diethylene glycol monobutyl ether (BC), on a  silicon 
wafer using a KRÜSS DSA 100 drop shape analysis system. The 
spreading on the substrate indicates the desired wettability for 
printing TSVs. 

Printability is a boundary condition placed by the printhead. 
For the presented study the single nozzle piezo actuated printhead 
MD-K-140 (microdrop Technologies GmbH, Germany) is used. 
Printability is strongly influenced by the ink viscosity and the 
dispersed particles (size and solid content). The requested viscosity 
range of 0.4 to 100 mPas is given by the printhead manual. A 
higher solid content leads to a higher viscosity. Generally viscosity 
can be adjusted by heating the ink. However, heating is limited due 
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to increased solvent evaporation at the nozzle, which might lead to 
clogging. 

 

 
Figure 1. Ejecting BC onto a silicon wafer (time elapsing from top to bottom) 
showing the desired low contact angle.  

Realization of TSVs requires electrical conduction from the 
top to the bottom of the via. Thus, sintering of the particles has to 
result in a suitable conductivity. Applied temperatures are limited 
because of temperature sensitive components placed on the wafer 
in earlier stages of the wafer production. Conveniently, sintering of 
nanoparticles requires much lower temperatures than sintering of 
macroscopic particles. Sintering at temperatures of between 
200 and 300 °C for 30 minutes suffice for the connection of the 
chosen silver particles (Silver Powder #11000-10, Ferro GmbH, 
Germany) with a mean diameter of 300 nm (Figure 2). 

These three aspects are taken into account while designing the 
ink. The result is an ink based on diethylene glycol monobutyl 
ether with a solid substance content of silver particles of 30 % by 
weight and a viscosity of 8.2 mPas (at a temperature of 35 °C and a 
shear rate of 10 000 s-1). Additionally, the ink comprises a small 
amount of ethyl cellulose for ink stabilization. The particles have, 
as mentioned above, a mean diameter of 300 nm. Optical 
measurements as well as weight measurements are conducted 
concerning drop volume. We measured drop volumes of 
178 ± 2 µm3 and 162 ± 10 µm3 respectively. Optical measurements 
are advantageous in time needed for measuring and reliability. 
Thus, they are to be preferred for future experiments and 
calculations. 

 

 
Figure 2. SEM cross sectional image of sintered (300 °C for 30 min) silver 
nanoparticles on a silicon wafer. 

Printing process & sintering 
A self-developed printing station is used in this study. It 

consists of the single nozzle printhead incl. its ink reservoir, an 

underpressure/electrical control system and a heatable substrate 
table. A camera is coaxially aligned with the nozzle for substrate 
observation and positioning. 

The printhead control system is used to determine and 
maintain optimum printing parameters (piezo voltage, pulse length 
and nozzle temperature). For this purpose, the printhead is moved 
to an observation station. A second camera system allows for the 
analysis of emitted drops by means of a stroboscope diode, which 
is triggered time-delayed by the piezo voltage. This camera is used 
to determine drop volume as well. Appropriate printing parameters 
strongly depend on the ink used (i.e. its viscosity, dispersed 
particles, surface tension). Once parameters providing steady, 
reproducible drops are found, printing can start. 

Substrate table movement and triggering of the piezo voltage 
are controlled by a LabView program designed specifically for our 
printing station. Layouts with freely selectable resolutions (µm per 
pixel) can be printed by loading a monochrome bitmap. In order to 
print, the substrate table is moved along under the nozzle line by 
line. Each pixel value specifies whether the piezo is triggered at a 
specific location. 

For filling of the TSVs it is necessary to print a large number 
of drops. Subsequent drops have to be placed with a time delay 
allowing the solvent to evaporate. Because of the low solid content 
concerning volume (silver particles of 30 % by weight in BC come 
up to only 3.7 % by volume), omitting the time delay would result 
in overflooding of the via, thus contaminating the area around it. 

Two ways of printing multiple drops at one location are 
realized. First, the whole layout is printed multiple times. In 
between successive layers, the substrate table is positioned so that 
the substrate camera can be used to observe the printing progress 
of a specific area after each layer. Before the substrate table is 
moved to print the next layer, an image of the printing progress is 
saved and the nozzle is cleaned. Cleaning is carried out by 
triggering the piezo multiple times (e.g. 1000 times with a 
frequency of 1 kHz). This prevents the nozzle from clogging 
because of solvent evaporation which is mainly caused by the 
substrate tables heating. Thus, printing with any waiting time and 
any number of layers can be carried out without the necessity of 
supervising the process while still allowing to document each 
layers progress. The second way of adjusting the ink amount is 
printing multiple drops at one location before moving on to the 
next. Both processes can be combined as well. The effect of 
different combinations is discussed  

As mentioned above, sintering is used to create electrically 
conducting connections between the printed particles (Figure 2). 
For sintering, the temperature is raised with 10 K/min to at least 
300 °C. After keeping peak temperature for 30 minutes, cooling-
down to room temperature is realized with 10 K/min again. 

Characterization methods 
Printed and sintered wafers are analyzed in top and cross 

sectional views. Top view images are obtained using an optical 
microscope. Cross sectional images of grinded vias are obtained 
using a scanning electron microscope (SEM). 

For grinding, the silicon wafer is cleaved into several wafer 
pieces. The samples are placed into a sample holder and embedded 
using an epoxy resin as molding material, which is liquid at room 
temperature. After baking out the epoxy resin a cross section 
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polish is prepared. First, grinding is carried out with a coarse-
grained grinding wheel to subtract material. Such abrasive 
materials have grain sizes of between 15 µm and 30 µm. Next, the 
sample is cleared of deformations and damages by mechanical 
polishing to approach the TSV to be analyzed. For this step, 
diamond polishing is a suitable method, using diamond particles 
with a grain size of 1 µm to 9 µm. The cross section is finalized by 
chemical mechanical polishing. Oxide particles like silicon dioxide 
or aluminum oxide with grain sizes of about 0.05 µm dispersed in 
alkaline solution permit fine and precise mechanical polishing of 
the last few microns before reaching the target cross section. 
Moreover, the chemical mechanical polishing removes smallest 
defects or polishing artifacts like scratches. In addition, applying 
the alkaline solution leads to a better material contrast for SEM 
studies and further analysis. 

The acquired images are used for evaluation of different 
approaches to inkjet printing of TSVs. 

Results & discussion 
The aim of electrically conducting silver filled TSVs can be 

achieved by filling the via completely or by coating its walls. 
Feasibility of both methods is discussed by interpreting the results 
of three printing variants. 

Variant I 
In variant one ink is ejected drop by drop into the vias (depth 

300 µm, diameter 75 µm) of a wafer, which is heated to a 
temperature of 80 °C. Waiting time between the drops is set to 
30 s. About 780 drops are needed to fill the via with silver 
(considering silver bulk density). However, after the deposition of 
120 drops an silver cap forms on top of the via. 

Investigation on cap formation is carried out by variation of 
substrate temperature and waiting time. It shows, that the 
formation of caps depends strongly on these parameters (Table 1). 
Lower substrate temperatures as well as shorter waiting times 
reduce the occurrence of caps, i.e. the more solvent is present 
while printing, the less caps are formed. It has to be taken into 
account that the sample size of 9 to 17 for each pair of parameters 
is not sufficient for reliable statistical conclusions. Sample size 
explains the lower than expected percentage of capped vias at 
operating point 70 °C/ 60 s.  

Cross sectional SEM images (Figures 3 and 4) of the sintered 
vias confirm, that the silver particles are not carried down to the 
via bottom, thus, forming the caps. As mentioned before, vias can 
be realized by complete filling or by wall coating. The SEM 
images show large cracks in the solid silver caps. These have to be 
avoided because cavities decrease an electrical components 
lifetime. The occurrence of cracks is ascribed to sinter shrinkage. 

Printing series of single drops with the given parameters 
discloses two important aspects of printing TSVs. First, fast 
evaporation at the vias top requires larger amounts of solvent than 
a single drop can provide. Second, complete filling with particles 
comprises the disadvantage of cracks in the via, thus, wall coating 
is the preferred method. 
 
 
 

Table 1. Variation of substrate temperature and waiting time 
strongly influence the formation of via caps. For each pair of 
parameters 9 to 17 vias are analyzed. 

Temperature in 
°C 

Waiting time in 
s 

Capped vias in 
% 

60 
15 
30 
60 

11 
55 
100 

70 
15 
30 
60 

78 
89 

(67) 

80 
15 
30 
60 

100 
100 
100 

90 30 
60 

100 
100 

 

 
Figure 3. SEM cross sectional image of a via after sintering at 300 °C for 
30 min.120 drops deposited with a waiting time of 15 s and a substrate 
temperature of 70 °C. 

 
Figure 4. SEM cross sectional image of a via after sintering at 300 °C for 
30 min.120 drops deposited with a waiting time of 60 s and a substrate 
temperature of 90 °C. 

Variant II 
To overcome the difficulties of printing variant one, i.e. cap 

forming, the printing process is adjusted to achieve wall coating in 
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the vias. Additionally, shallower vias are filled (depth 100 µm, 
diameter 75 µm). The number of drops needed for an overall silver 
coating of 4 µm thickness is calculated. It amounts 16 drops for a 
via with a depth of 100 µm and a diameter of 75 µm. This number 
is fractioned in multiple drop series. The result of (a) printing all 
16 drops at once (frequency of 1 kHz) is compared to the result of 
(b) printing 8 fractions of 2 drops with a waiting time in between 
fractions of 60 s. The analyzed samples are sintered at 400 °C. 

The wafers surface is contaminated with silver particles in 
both cases. Using process (a) leads to a much larger contaminated 
area. This can obviously be explained by the larger amount of 
solvent present after drop deposition. As printed, sixteen drops 
have a volume of about 30 vias. Thus, overflooding of a large area 
around the via is inevitable. 

SEM images show the great advantage of variant two printing 
processes compared to variant one (Figures 5 and 6). A large 
amount of particles is deposited on the side walls of the via as well 
as on the bottom forming incomplete, probably non-conducting, 
but homogeneous silver layers. As the same number of drops are 
printed in both variant two processes, more silver particles are 
carried into the via using process (b) due to reduced overflooding. 

Some overflooding is necessary in order to allow for an 
electrical connection from the via to the wafer surface. However, 
the occurrence of excessive overflooding is disadvantageous in two 
aspects. First, calculating the number of drops necessary to inject a  

 

 
Figure 5. SEM cross sectional image of a via printed with variant II process 
(a) after sintering at 400 °C for 30 min.16 drops deposited without a waiting 
time. Substrate temperature 80 °C. 

 
Figure 6. SEM cross sectional image of a via printed with variant II process 
(b) after sintering at 400 °C for 30 min.16 drops deposited in 8 fractions of 2 
drops with a waiting time of 60 s. Substrate temperature 80 °C. 

specific amount of silver into a via is hindered, if not impossible. 
Second, wide spread coverage of the wafer surface enlarges space 
consumption of a single TSV and can interfere with other 
components on the wafer. 

Printing variant two, though providing considerable 
improvement compared to variant one, has to be adjusted to form 
closed layers. 

Variant III 
In order to investigate the reason for incompleteness of the 

silver layers, variant three introduced some slight modifications. 
Printing process (b) is used again with severely reduced sintering 
temperature (200 °C) for one sample and the number of drop series 
is doubled for another, i.e. 16 fractions of 2 drops. A via printed 
with the last-mentioned parameters can be seen in top view in 
Figure 8. 

 

 
Figure 8. Via in top view after the deposition of 32 drop in 16 fractions of 2 
drops with a waiting time of 60 s. Substrate temperature 80 °C. Depth of field 
from wafer surface to via bottom. 

Doubling the amount of deposited ink results in better 
coverage inside the via (Figure 9). Total layer thickness ranges 
from 2.9 to 15 µm. Small cavities between chunks of silver still 
exist and a connection from inside the via to the wafer surface is 
weak. In addition, bulges are formed half way down the via. 
Possibly, this is a result of the solvent evaporating mainly in this 
part of the via. 

Reducing the sintering temperature results in a more 
homogenous coverage than sintering at 400 °C (Figure 10). No 
large cavities can be found. Bulges are present in this sample as 
well. Layer thickness ranges from 1 to 8.6 µm. However, after 
sintering at 200 °C the nanoparticles appear to be welded but not 
coalesced. The effect of sintering temperature on conductivity can 
only be investigated by electrical measurement. Therefore, wafers 
with pre-processed daisy-chains (i.e. conductors connecting the 
bottoms of two vias inside the wafer) will be used for subsequent 
printing trials. 

Two conclusions can be drawn from these two variations. 
First, sintering temperature has to be chosen below 400 °C to avoid 
small cavities. Second, the amount of solvent present at a time, i.e. 
the number of drops deposited at once, can be used to control 
where most of the particles will accumulate inside the via. 
Changing the number of drops deposited at once while printing 
might, thus, result in homogeneous layers concerning thickness 
while avoiding any cavities by selecting an appropriate sintering 
temperature. 
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Figure 9. Variant III: SEM cross sectional image of a via after sintering at 
400 °C for 30 min.32 drops deposited in 16 fractions of 2 drops with a waiting 
time of 60 s. Substrate temperature 80 °C. 

 
Figure 10. Variant III: SEM cross sectional image of a via after sintering at 
200 °C for 30 min.16 drops deposited in 8 fractions of 2 drops with a waiting 
time of 60 s. Substrate temperature 80 °C. 

Conclusions & Outlook 
This paper proves the feasibility of inkjet printing of through 

silicon vias. While complete filling of the vias is undesirable due to 
cracks appearing during sintering, side wall coating of the vias is a 
promising approach. Descriptions on how to achieve homogeneous 
coverage with silver particles in the via are given. 

Further experiments have to investigate the influence of the 
amount of ink printed per time and of the sintering temperature on 
the conductance of the vias. Shifting the drop rate might greatly 
increase homogeneity and quality of the conductive coating. 

Pre-processed daisy-chains will allow for electrical 
characterization of future samples. Corresponding electrical 
measurements require contact areas on the wafer surface. Coverage 
of the via edge has to be realized, e.g. by printing a small number 
of drops slightly shifted to the via on purpose. 

The evaluation of faster, non-destructive characterization 
techniques concerning silver distribution in the via, e.g. using x-
rays, is in operation. Non-destructive characterization will be a 
useful tool when investigating the vias stability in the field, e.g. its 
ability to withstand temperature cycles. 

Additionally, future investigations will take different particles 
into account, e.g. adding smaller nanoparticles into our ink might 
improve binding of the silver when sintering at low temperatures 
like 200 °C. 
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