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Abstract 

Digital printing processes are gaining more and more interest 
as an approach to implement electrical functionality (conductive 
patterns, sensors etc.) on different types of substrate materials. 
Focusing on the inkjet-printing process, the paper presents results 
that were gathered with-in the research project “FKIA”, funded 
by the Bavarian Research Foundation. In the paper, the 
applicability of inkjet printing of silver nanoparticle ink on 
technical thermoplastics substrate materials commonly used in 
automotive applications such as glass fiber filled PA, but also on 
phenolic paper substrates (FR-2) is investigated. In this context, 
the influence of the surface roughness of the molding tool on the 
printing results was examined. Besides thermal sintering of nano-
particles, photonic sintering as one alternative approach is 
discussed. In addition, the long-term behavior of the produced 
conductor tracks was investigated. Parts were exposed to thermal 
cycling between -20°C and +100° for 1500 cycles. Besides the 
stability of the electrical properties also the mechanical stability of 
the metallic layers on the different substrates was compared with 
the findings prior to any exposure. 

Introduction 
As an emerging technology, digital printing processes are a 

promising approach for the additive metallization of Molded 
Interconnect Devices (MID) and other substrate materials. MIDs 
are injection molded three-dimensional devices, which integrate 
mechanical as well as electrical functions in one thermoplastic part 
[1]. Most research investigations focus on the applicability of 
expensive substrate materials such as Liquid Crystal Polymer or 
polyimide as carriers for printed electronics [2-4]. This material 
selection is mainly driven by the sintering temperatures needed to 
achieve high and reproducible conductivity. The investigations 
presented in this paper were initiated to demonstrate the 
capabilities and opportunities of ink-jetting silver ink based 
conductors tracks onto cost-effective injection molded thermo-
plastic substrates, which are commonly used in high volume 
automotive applications. In parallel, a low invest printing process 
with common or only mechanically adapted office ink-jet printing 
equipment for fabricating conductor tracks is presented.  

Materials, equipment and test conditions 

Used substrates and ink 
Out of four different thermoplastic substrate materials 

commonly used in automotive applications, plate specimen 
(dimensions 60mmx60mmx1mm) with three different levels of 
surface quality according to molding tool variations were molded.  
In parallel, phenolic paper substrates (thermosetting material) with 
the same dimensions were used. Glass substrates were selected for 

some basic evaluations as a reference material. Details regarding 
the chosen materials can be found in Table 1. 

Table 1. Substrate Materials 
Abbreviation Material& 

Filler 
Heat deflection 

temperature 
Water 

absorption 
A PA6.6  

30% GF 
234°C 5,6% 

B PA6 
40% MF 

186°C 5,4% 

C PA6 
30% GB/GF 

170°C 6,5% 

D PBT/ASA 
20% GF 

160°C 
(VST) 

<1% 

E FR-2 - - 
 
Specially treated steel-inserts in the injection molding tool 

gave the opportunity to investigate the influence of the surface 
roughness on the inkjet printing behavior and the results. With 
these three different inserts, the surface roughness of the tool is 
transferred during the molding process to the thermoplastic 
specimen, thus resulting in different surface qualities of 
thermoplastic specimen. Figure 1 lists the surface qualities, 
depending on the insert type and the substrate material.  

 

 
Figure 1. Surface roughness of thermoplastic and thermo-setting specimen 

As expected, the polished insert results in the lowest 
roughness values both for Ra and Rz, whereas the milled insert 
resulted in highest roughness values. Material E shows values 
similar to values obtained with polished insert. 

For printing, a commercially available ink from ANP (DGP 
40TE-20C) was used as received. According to the suppliers 
information, it consists of nano-silver particles in a TGME 
solution. The supplier recommends “curing temperatures” of 
around 180°C…200°C, without giving further information about 
the recommended curing time. Therefore it was necessary to 
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determine the appropriate sintering process settings in the first step 
of the investigation program. 

Test structures 
To investigate the behavior of the Ag-filled ink during 

printing and sintering as well as the electrical resistance after 
sintering and accelerated ageing, a simple test structure was 
defined. The layout consists of several parallel tracks with nominal 
width of 1mm and 0,4mm and an effective length of 44mm. In 
addition, squares were printed onto selected substrates in order to 
evaluate the mechanical adhesion of the sintered ink to the 
substrate using the cross cut test according to ISO 2409 [5]. 

Used equipment 
For printing, commercially available office inkjet printers 

from EPSON were used: 
• EPSON R200 
• EPSON R1800 (modified by Printolux: printing head can be 

lifted to enable printing onto three-dimensional parts) 
It needs to be mentioned that using common office printers 

for printing Ag-nano-inks results in some constraints regarding 
process control and tuning. Adaption and optimization of the 
printing results using features such as drop space, waveform etc. is 
not possible. Therefore, it is crucial, that the chosen ink is 
compatible in terms of viscosity etc. with the selected printer. 
Additionally, office printers do not provide the position accuracy 
which is necessary for multiple printing of overlaying ink layers. 

Thermal curing (sintering) of the inks was done in a 
preheated batch convection oven in normal air atmosphere. 

Accelerated Ageing 
To determine the effect of the different factors such as surface 

roughness, substrate material and conductor track width on the 
long term behavior, accelerated ageing tests were performed. The 
selected test conditions were slow thermal cycling between -20°C 
and +100°C with dwell times of 30 minutes each for 1000 cycles 
in an air system. This thermal cycling condition was chosen as it 
corresponds to automotive industry qualification requirements for 
electronic/mechatronic parts in passenger compartment. Resistance 
values of printed conductor tracks were recorded offline by four-
point-measurement at room temperature after defined intervals.  

Results 

Printing Process  
Prior to printing, all substrate were dried for 4h/80°C to 

achieve a reproducible and low water content and hereafter 
cleaned with lint-free clothes soaked with isopropyl alcohol. 

After adjusting the printing program using the appropriate 
software, test structures were printed onto the dried and cleaned 
substrates. For getting sufficient and stable conductivity, multiple-
printing up to 6 times was necessary, interrupted by 10 minute 
drying at 70°C. With these settings, conductor thicknesses of 2µm-
3µm after sintering were achieved. 

After printing, the structures were investigated using 
microscopy. Here it was found that substrate surfaces produced 
with the milled tool insert were not suitable due to un-controlled 
“bleeding” of the Ag-ink, following the surface structures induced 
by the milling process. For further investigations, this type of 

surface was not considered any longer. On the remaining surface 
qualities, relatively accurate lines can be printed. The line widths 
of dried conductor tracks independent from the substrate material 
were within a tolerance window of +/-20%, which is comparable 
to results achievable for conventionally etched traces on PCBs. 

Sintering process evaluation 
As mentioned above, determination of the appropriate curing 

(sintering) process for the ink was the first step of the investigation 
program. In order to get further information about the interaction 
between sintering conditions (temperature, time) and properties of 
the thermally treated Ag-ink-layers such as resistance, test 
structures were printed onto glass substrates. Due to the good 
thermal stability of this material, even higher curing temperatures 
will not influence the dimensional stability of the substrate.  

Results showing the effect of the curing temperature (duration 
1h) on the measured resistance values and the micro hardness of 
the cured Ag-layers can be seen in Figure 2.  

 

 
Figure 2. Development of resistance and micro hardness as a result of curing 
conditions 

As expected, higher curing temperatures result in better 
conductivity. In the other hand, best conductivity was achieved 
with curing temperatures between 220°C…300°C, which is 
significantly higher than recommended by the supplier. In 
addition, micro hardness measurement indicates increasing 
hardness of the sintered Ag-layer up to curing temperatures of 
around 240°C. Taking these results into account, best curing 
conditions would be 240°C for 1h. 

Unfortunately, the selected thermoplastic substrates are not 
able to withstand curing temperatures of 240°C. Therefore, it was 
necessary to define curing conditions providing a compromise 
between reasonable electrical performance and hardness on the 
one and reduced thermal stress for the substrates on the other hand. 
Finally, a curing profile of 180°C/1h was used for all further 
investigations. However, processing substrate material C and D 
with these conditions resulted in significant loss of dimensional 
stability with extreme bow and twist, therefore these materials 
were not used for further tests.  

Initial resistance and adhesion values 
After printing and sintering at 180°C/1h initial 

characterization of the samples was performed. Results displaying 
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the influence of the selected substrate material A and B, the 
conductor width and the surface roughness can be seen in Figure 3. 
As expected, the polished tool surface results in the lowest 
resistance values, especially for broader conductor traces of 1mm 
width. For track width 0,4mm mean resistance values and 
variances are increasing by a factor of 3…4. Significant 
differences between the two substrate materials cannot be detected. 
In general, good results can be achieved even with ground tools. 
On material E (not shown in Figure 3), slightly higher resistance 
values of around 5Ohm for conductor width 1mm were measured. 
The variance of the values was comparable to the results gained on 
polyamide substrates. 
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Figure 3. Initial resistance values of conductor tracks  

The adhesion of the cured Ag-layer on both thermoplastic as 
well as on the thermosetting material is excellent. After cross cut 
testing ISO grading GT 0 was observed in the initial stage. No 
difference between the surface qualities could be observed. 

Longterm behavior – resistance and adhesion 
As already mentioned, printed test specimen (substrate A, B, 

E) were subject to slow thermal cycling between -20°C and 
+100°C up to 1500 cycles, 500 cycles more than originally 
planned. Despite of the relatively high thermal expansion 
coefficients for the thermoplastic materials between 30ppm/k up to 
65ppm/k depending on the filler material type and orientation of 
the filler, the average values for the resistance of the conductor 
tracks for all materials, surface qualities and tracks widths 
remained stable or slightly dropped. Additionally, no increase of 
the variation could be observed. As the results for track width 
1mm on both thermoplastics show (Figure 4), up to 1500 cycles no 
degradation of the electrical performance can be detected. 

Similar observations were made for the adhesion strength. 
After 1000 cycles, no degradation of the adhesion strength can be 
detected during cross cut testing for all tested variations. The 
grading GT 0 remains unchanged. The edges of the cuts are 
completely smooth, none of the squares of the resulting lattice is 
detached.  
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Figure 4. Effect of thermal cycling on the resistance values of conductor 
tracks (width 1mm)  

Alternative Sintering Processes 
To fabricate conductive tracks on substrates with low thermal 

stability, sintering is a crucial step. Due to the low thermal stability 
of the selected substrate materials, a process window with reduced 
thermal stress for the substrates needed to be identified. As a 
drawback of the reduced process temperatures, the achieved 
conductivity does not reach the optimum values. Therefore as a 
potential alternative among others [6], photonic sintering with 
intense pulsed light as a low temperature sintering alternative for 
temperature sensitive substrates was investigated to sinter the 
silver nanoparticle ink patterns.  

Photonic sintering is a low thermal exposure sintering method 
using short light pulses (around 1ms) of a wavelength provided by 
a xenon flash lamp. The emitted light is absorbed by the 
nanoparticles to some extent, which heats them up and results in 
sintering to larger particles. To achieve good conductivity of the 
printed Ag-layers, the sintering process window defined by energy 
density and pulse duration needs to be set properly. For the 
experiments described in this paper, a photonic sintering system 
(Xenon Sinteron 2000, provided by Polytec, Waldbronn) equipped 
with a xenon spiral flash lamp was used. The pulse energy of the 
system can be set between 450Joule and 2000Joule, the duration 
can be adjusted between 100µs and 2000µs. The distance between 
the lamp and the substrate surface was kept fixed at 50mm. 

To assess the potential of photonic sintering for substrates 
with lower thermal stability, only experiments on small scale basis 
were done so far. Printed substrates were subject to flash-light 
sintering with different pulse energies and durations. For the 
thermosetting material E, multiple flash sintering (25 respectively 
12 repetitions) with pulse energies of 900 respectively 1350 Joule 
results in resistance values which are comparable or even lower 
than the corresponding values for thermal sintering (Figure 5). The 
resulting conductor traces were formed regularly, without 
indicating any blistering or surface cracks. Summing up, the 
process window for this type of material seems to be very robust 
and has room for further reduction of flash light pulse repetitions. 
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Figure 5. Initial resistance values of conductor tracks on FR-2 after photonic 
sintering with two different energy levels for both track widths (reference 
values: thermal curing 180°C/1h) 

In contrast, photonic sintering on the remaining thermoplastic 
materials did not provide a similar robust and broad process 
window. Blistering of the Ag-layer, crack formation and adhesion 
loss between the substrate material and the Ag-tracks can be 
observed, if too much energy is applied. Other investigations 
describe similar observations [7]. As a result, lower single pulse 
energy settings and smaller number of pulse repetitions are 
necessary in order to avoid destroying of the printed conductors. 
However, the conductivity measured with these settings is 
remarkably worse than that for thermally sintered conductor 
tracks. 

The reason for the observed blistering is not yet fully 
understood, but could be due to the high sensitivity of polyamide 
for water absorption. As there was a delay of 5 days between 
printing and photonic sintering, this might have caused water 
absorption from the air and therefore inferior performance during 
photonic sintering. Another explanation could be the thermal 
decomposition of organic coatings, which cover the nano-particles 
and prevent agglomeration prior to printing, during photonic 
sintering [7]. Further evaluations are on-going to understand the 
observed behavior and to improve the sintering results. 

Conclusion and Outlook 
Different manufacturing aspects for low-cost inkjet printing 

of Ag nanoparticle ink on thermoplastic and thermosetting 
substrate materials were investigated. The main aspects were print 
resolution and line width as well as conductivity and mechanical 
behavior of sintered structures. In the present case, with low cost 
inkjet equipment line widths down to approximately 400µm can be 
achieved. Surface roughness of the substrate material influences 
the spreading behavior in a significant way therefore very smooth 
surfaces are preferable. Due to the limited thermal stability of the 
selected substrate materials, sintering temperatures need to be 
reduced to 180°C, which results the relatively low conductivity 
compared with the results achievable with optimum curing 
conditions. Nevertheless, acceptable and stable conductivity can 
be achieved on all substrates. The adhesion of the cured layers on 
the different substrates is also not affected by thermal cycling 
between -20° und +100°C for 1500 cycles. In order to reduce the 
thermal load for low-temperature substrates, photonic sintering as 

a potential alternative to thermal sintering was investigated on 
small scale basis. The conductivity of conductor tracks on material 
E sintered with xenon flash lamp were slightly higher than 
corresponding values gained by thermal sintering. Nevertheless, 
applying photonic sintering to polyamide materials needs further 
investigation in order to define a robust process window and to 
determine root-cause and counteractions for the blistering. 

In total, ink-jet printing of Ag-nano-inks is a highly 
promising approach for the functionalization of thermoplastic and 
other materials with lower thermal resistivity.  
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