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Abstract 

Printed metal grid conductors can be used in thin, flexible 
and large area lighting sources based on e.g. light-emitting 
electrochemical cells (LEC). Similar to organic light emitting 
diodes (OLEDs), LECs are thin film electroluminescent devices, 
which can be processed from solution. However, LECs have a 
more simple architecture, and don’t rely on air-sensitive charge-
injection layers or metals for electron injection. This offers 
simplicity for manufacturing process, cost-efficiency and easier 
large scale manufacturing. Printing methods such as inkjet and 
flexography are suitable for manufacturing metal grid conductors 
needed in LEC devices. 

The goal of this paper is to evaluate the potential of 
flexography and inkjet printing to manufacture metal grid 
conductors in industrial scale. Printing equipment that can be up-
scaled to industrial scale is used and printing conditions are 
modified to meet the device requirements. Performance and 
properties of inkjet and flexographic printed conductors are 
compared. Finally, feasibility of the required industrial setup is 
evaluated. 

Introduction 

LEC technology 
Typically LEC devices consist of one or two functional layers 

device that are sandwiched between two electrodes of which the 
emissive layer is ionic. When an external bias is applied the 
positive and negative ions of the emissive layer are displaced and 
an interfacial electric field is generated that allows for efficient 
hole and electron injection from air-stable metals. 

 

 
Figure 1. Basic structure of a sandwiched LEC device. 

Two different LEC device architectures exist: sandwiched 
and interdigitated devices. In the latter the active layer is deposited 
on top of an interdigitated electrode structure. This paper focuses 
on sandwiched devices where the active layer is placed in between 

two large area electrodes (figure 1). At least one of the electrodes 
is transparent. 

Objectives 
In this work, the transparent bottom electrode of the LEC cell 

consists of ITO coated PET substrate (ITO-PET) with inkjet or 
flexographic printed metal grid conductors on top of it. These 
printing methods provide system flexibility for industrial setup, 
potential for high throughput and small details, and compatibility 
with different kinds of ink types. On top of the bottom electrode, 
PEDOT:PSS, emissive layer and top electrode are added by 
printing or coating methods. Basically, the whole LEC device 
could be printed, but this work focuses only on metal grid 
conductor printing. The metal grid conductor consists of 150 mm × 
150 mm grid with 5 mm wide electrodes on all sides. Pedot 
coating is added afterwards.  

The goal of the printing trials was to fabricate metal grid 
conductors namely honeycomb structures with as little surface 
roughness as possible, layer thickness of grid below 1 µm, layer 
thickness of electrodes in the range of 10-20 µm, grid line width 
200 µm, good conductivity and good adhesion in processing 
conditions that simulate industrial production. 

Materials and methods 
Industrial-scale multi-nozzle inkjet printheads with 10 and 30 

pl drop size and 128 nozzles (S-Class printheads from Fujifilm 
Dimatix) were used in combined single-pass and scanning mode 
where printheads are stationary and sheet substrate moves under 
the printheads. Because the native resolution of the printheads 
used is 50 dpi, several scans were required to increase the print 
resolution to 600 dpi. In industrial setup the same can be achieved 
with interlaced printheads. Printing speed of 150 mm/s was used. 

Different commercial inkjet inks were tested in order to find 
the best ink for metal grid patterning. Ink testing was done with 30 
pl drop size and after ink selection printings were done with 10 pl 
frop size. Two silver nanoparticle inks (Silverjet DGP 40LT-15C 
from Advanced Nano Products and NPS-JL from Harima) and one 
soluble silver cluster complex ink (TEC-IJ-060 from InkTec) were 
inkjet printed. Sintering was done in 140 °C for 1 hour. 

Preliminary flexographic printing trials for ink testing 
purposes were performed with a table top flexographic printer RK 
Flexiproof 100 from RK Print Coat Instruments. Different printing 
speeds were used to deposit the same honeycomb metal grid 
structure on the ITO-PET substrate via a flexible printing plate. 
The anilox roller was chromed and its cell volume was 13.6 
cm3/m2. The effect of the sintering time on the printed layer 
quality was also looked at. R2R flexographic printing trials were 
performed with ROKO pilot printing machine. Honeycomb metal 
grids were printed onto the ITO-PET substrate. The cell volume of 
the chromed anilox roller was 9 cm3/m2. 
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Figure 2. Inkjet and flexographic printers used in this study. From left inkjet 
printer with industrial scale printheads, table top flexographic printer and roll-
to-roll flexographic printer. 

Two different commercially available flexographic/gravure 
nanoparticle inks (PGi-722 from PChem Associates and TEC-PR-
020 from InkTec) were printed with flexography at a speed of 10 
m/min. The printed ink layers were dried in an oven. R2R printing 
trials were performed with InkTec TEC-PR-030 nanoparticle ink 
at a speed of 2 m/min. The samples were dried through the four 
ovens of the printer twice.  

All inks are listed in table 1. 

Table 1. Inkjet and flexographic inks and their properties. 
Ink name Printing 

method 
Ink type Particle 

size 
Metal 
content 

Silverjet 
DGP 40LT-
15C 

Inkjet Silver nano-
particle 

40-50 nm 35 wt-% 

NPS-JL Inkjet Silver nano-
particle 

5-12 nm 52-57 wt-% 

TEC-IJ-060 Inkjet Soluble 
silver 
cluster 
complex 

- 12 wt-% 

PGi-722 Flexography 
/ gravure 

Silver nano-
particle 

10-20 nm 50-65 wt-% 

TEC-PR-
020 

Flexography 
/ gravure 

Silver nano-
particle 

20-50 nm ~30 wt-% 

TEC-PR-
030 

Flexography Silver nano-
particle 

20-50 nm ~50 wt-% 

 
Commercial ITO (Indium Tin Oxide) coated PET (Poly 

Ethylene Terephthalate) substrate was used as substrate (OC50-
ST504 from Solutia). 

Print layout consisted of honeycomb grids, lines with varying 
line width and areas for contact resistance measurements. 

Visual print quality, ink spreading, three-dimensional profile, 
ink layer thickness, surface roughness, square resistance, volume 
resistivity and contact resistance of both inkjet and flexographic 
printed samples were analyzed. The ink spreading was measured 
with Smartscope optical microscope. The layer profile and 
thickness were analyzed with Veeco Dektak 150 surface 
profilometer and layer roughness with Veeco Wyko white-light 
interferometer. The square resistance and volume resistivities were 
calculated from the measured line resistance, line dimensions, and 
layer thickness.  

The contact resistivity between the silver patterning and the 
transparent ITO conductor was measured using lines printed at 
varying distance from each other. With this procedure, the line-to-
line resistance can be reliably measured while eliminating any 

probe-to-line contact resistance terms. The probes were gently 
lowered onto the silver lines to ensure the silver layer remains 
unbroken. The transfer length method (TLM) was employed to 
extract the specific contact resistivity (ρC) and the ITO sheet 
resistance from the measurement data. Detailed information about 
this procedure can be found in [1]. 

Results 

Ink and substrate compatibility 
The biggest challenge in the printing trials was that the 

commercial ITO-PET substrate was found to have poor 
compatibility with both inkjet and flexographic inks resulting in 
excessive ink spreading and poor adhesion with some of the inks. 

In inkjet printing with silver cluster complex ink there were 
lots of printability challenges resulting in satellites, missing 
nozzles and nozzle drying. Also after sintering there were pin 
holes in larger printed areas. Due to these problems this ink was 
abandoned from further trials. The two silver nanoparticle inks 
performed well during printing. However, NPS-JL ink had poor 
adhesion to substrate and also some nozzle drying was seen thus 
resulting in occasional missing nozzles. Due to this Silverjet DGP 
40LT-15C ink was chosen for further trials. 

To avoid excessive ink spreading in inkjet printing solvent 
evaporation was accelerated by using substrate heating up to the 
sintering temperature of 140 °C during printing. This resulted in 
fast ink curing because of immediate solvent evaporation without 
ink spreading and at the same time prevented also bulging and 
coffee ring effects not desired for conductors. The principle of 
heated substrate is presented in figure 3. More information on the 
effect of substrate temperature can be found in [2]. 

 

 
Figure 3. Principle of heated substrate and its effect on ink spreading. 

Both flexographic inks had a good printability, but TEC-PR-
020 ink had some adhesion problems and PGi-722 ink dried rather 
quickly onto the anilox roller, thus making the cleaning up 
extremely difficult. Plasma treatment (300 W, 5 min) of the 
substrates decreased ink spreading and allowed appropriate ink 
transfer. InkTec inks were chosen for further R2R experiments 
because of its better smoothness, cleanability and suitability to be 
used with common chromed anilox rollers. TEC-PR-030 
flexographic ink was acquired for R2R experiments to ensure total 
compatibility of the ink with the flexographic printing process. 
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Roughness and print quality optimization 
Challenge in inkjet printing was high surface roughness due 

to the fact that in inkjet printing features are made from separate 
small ink drops that might not set optimally to form an even ink 
layer [3]. In order to achieve low surface roughness heated 
substrate was used. Also optimization of print resolution resulted 
in low surface roughness and at the same time thin ink layer. Too 
high print resolution produced thicker ink layers than targeted and 
too much ink spreading. Also large ink areas behaved undesirable 
during sintering producing areas with uneven ink coverage. On the 
other hand too low print resolution resulted in ink layer which 
seemed to be made of separate dotted lines thus increasing 
standard deviation of surface roughness. 

In flexography, ink was squeezed towards the edges of the 
printed features. This led to the formation of sharp edges that were 
separated from the actual printed layer and in which the layer 
thickness was larger than the average layer thickness. This 
squeezing is typical for flexography and cannot be eliminated 
totally. Figure 4 shows microscopic images of lines printed with 
inkjet and flexography. 

 

  
Figure 4. Microscope images of lines printed with (from left) flexography and 
inkjet with optimized printing settings (600 dpi, 140 oC substrate temperature). 

Target line width was 200 µm, but because of ink spreading 
actual line width was at least 300 µm (Figure 5). In addition 400 
µm and 600 µm lines were tested and also they spread 
correspondingly. Horizontal lines spread a bit more than vertical 
lines. Since in inkjet printing there is no contact pressure present in 
printing inkjet lines spread less than corresponding flexographic 
lines. Line width could be decreased to desired level by using 
thinner lines than target line width in the print layout thus 
compensating ink spreading. 

 

 
Figure 5. Line width of inkjet and flexography printed horizontal and vertical 
lines when target line widths were 200, 400 and 600 µm. 

Target layer thickness for grids was below 1 µm. Both 
flexography and inkjet printed lines were able to meet this goal 
(figure 6). Inkjet printed grid lines were a bit thicker, but had 

higher standard deviation due to striping caused by adjacent 
nozzles. Target layer thickness for electrodes was 10 µm, but with 
three inkjet printed ink layers only 1.5 µm layer thickness was 
achieved thus indicating than at least 10 ink layers would be 
needed. However, different ink layers were placed nicely on top of 
each other without affecting the line width compared to one ink 
layer. 

 

 
Figure 6. Layer thickness for inkjet printed grids and electrodes and for 
flexography printed grids. 

Surface roughness was higher with flexography than with 
inkjet, but inkjet had higher variation (figure 7). Inkjet ink particle 
size was 40-50 nm and with smaller measurement area the Ra 
value is in the same range thus indicating that there is no room for 
roughness improvement since particle size has already been 
reached. In flexography, there were lots of unsintered particles 
present in the printed layer, thus making also the small-scale 
roughness high. 

 

 
Figure 7. Surface roughness and its variation for inkjet and flexography 
printed grids. 

Electrical performance 
Electrical performance was found good with both inkjet and 

flexographic printed grids (Figure 8). Volume resistivity values 
were in the order of 0.01-0.02 mΩ cm. Flexographic grids had 
better conductance than inkjet, probably due to higher metal 
loading. Un-sintered nanoparticles, printing process related stripes 
and waviness, poor ink layer leveling, and adhesion issues can also 
decrease the conductance. Corresponding square resistance values 
were in the order of 400 mΩ/square. Inkjet printed layers had 
higher resistance variations probably due to striping and waving.
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Figure 8. Volume resistivity of inkjet and flexography printed lines. 

Specific contact resistance were in the range of 0.5-15 
mΩcm2. Increasing the sintering time can decrease not only the 
resistivity of the printed grid lines, but also the specific contact 
resistance between the silver lines and the underlying ITO layer. 

Conclusions 
As a conclusion, both inkjet and flexographic printing were 

found suitable for fabricating metal grid conductors since surface 
roughness, layer thickness and electrical performance met the 
target values when printing conditions were carefully optimized. 
Some compromises had to be made between adhesion, surface 
roughness, layer thickness and process reliability requirements. 
However, further testing is needed to investigate if these grids can 
be used in LEC devices since surface roughness of the grid might 
cause shorts in the LEC devices after all. Also adhesion of the 
girds should be studied further since it is also a critical property in 
LEC devices. 

Inkjet printing is especially suitable when customization of 
the printing pattern, fine details, integration with existing 
production lines and multi-layer printing is required. Flexography 
in turn is ideal when higher throughput or more reliability is 
needed. Since results presented in this paper were made with 

printing equipment suitable also for industrial production, these 
results should be up-scalable for production environments. 
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